Heat transport in turbulent Rayleigh-Bénard convection for $\text{Pr} \simeq 0.8$ and $\text{Ra} \lesssim 10^{15}$

Guenter Ahlers1, Denis Funfschilling2, & Eberhard Bodenschatz3,4,5

1Department of Physics, University of California, Santa Barbara, CA 93106, USA,
2LSGC CNRS - GROUPE ENSIC, BP 451, 54001 Nancy Cedex, France
3Max Planck Institute for Dynamics and Self Organization, D-37073 Göttingen, Germany
4Institute for Nonlinear Dynamics, University of Göttingen, D-37073 Göttingen, Germany
5Laboratory of Atomic and Solid-State Physics and Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853
E-mail: guenter@physics.ucsb.edu

Abstract. We report experimental results for the heat transport, as expressed by the Nusselt number Nu, by turbulent Rayleigh-Bénard convection in a cylindrical sample of aspect ratio $\Gamma \equiv D/L = 0.50$ ($D = 1.12$ m is the diameter and $L = 2.24$ m the height). The measurements are for the Rayleigh-number range $10^{12} \lesssim \text{Ra} \lesssim 10^{15}$ and for a Prandtl number $\text{Pr} \simeq 0.86$. At these large Ra the results were exceptionally sensitive to details of the experiment. Near $\text{Ra} = 10^{15}$ the Nusselt number could be caused to vary over the range $3500 \lesssim \text{Nu} \lesssim 5800$ by minor changes in the apparatus or operating procedure.

1. Introduction

The dependence of the Nusselt number Nu upon the Rayleigh number Ra in the limit of large Ra is of interest for at least two reasons. On the one hand, it is expected theoretically that this dependence may change from an effective power law $\text{Nu} = N_0 \text{Ra}^{\gamma_{\text{eff}}}$ with $\gamma_{\text{eff}} \simeq 0.31$ to one with $\gamma_{\text{eff}} \simeq 0.39$: this transition is predicted to be associated with a transition of the viscous boundary layers near the top and bottom plates from a laminar to a turbulent condition (1; 2). On the other hand, an extrapolation of laboratory measurements to astrophysically and geophysically relevant ranges of Ra, which often are well above 10^{20}, requires an understanding of $\text{Nu}(\text{Ra})$ well above this transition. Such extrapolations at present are uncertain by orders of magnitude as nominally equivalent laboratory experiments using helium gas at temperatures near 5 K and in the range $\text{Ra} \lesssim 10^{15}$ (3) or 10^{17} (4) disagree significantly with each other, with a transition in $\text{Nu}(\text{Ra})$ apparently present in one (3) but not in the other (4).

2. The High Pressure Convection Facility

The uncertain situation described above motivated us to construct a very large convection sample cell, located in an even larger pressure vessel known as the Uboot of Göttingen at the Max Planck Institute for Dynamics and Self Organization in Göttingen, Germany (5). This sample, known as the High Pressure Convection Facility, was cylindrical and of aspect ratio $\Gamma \equiv D/L = 0.50$ ($D = 1.12$ m is the diameter and $L = 2.24$ m the height). The top and bottom
plates were made of copper, and the sidewall was made of Plexiglas and had a wall thickness of 9.5 mm. The pressure vessel, and with it the sample cell, was filled with a suitable gas, usually sulfur hexafluoride (SF$_6$), at pressures up to 19 bars; this gas served as the convection fluid. As described elsewhere (5), the cell was protected by numerous thermal shields designed to prevent parasitic heat flow from the bottom plate to places other than through the sample.

It is apparent that during the filling process the cell can not be sealed and that at least some small leak between it and the Uboot must exist to permit the gas to enter. To this end a small gap of width approximately one mm (which was considered negligibly small compared to the 1120 mm diameter) was initially permitted to exist between the side wall and both the top and the bottom plate. We shall refer to this sample as the “open sample”.

3. Results from the “open sample”

Measurements with the open sample, which had been reported previously (5; 6; 7), are shown in Fig. 1a. The Nusselt number itself varies by over an order of magnitude over our Ra range and is difficult to display with adequate resolution. Thus we show the reduced Nusselt number $\text{Nu}/\text{Ra}^{0.3}$, which should be nearly constant if $\gamma_{\text{eff}} \simeq 0.3$. The various symbols and colors correspond to various sample pressures and operating conditions. One sees that there are two or more branches. The lower (upper) one was attained when the mean sample temperature T_m was higher (lower) than the Uboot temperature T_U. Values of Nu between the two extremes could be attained as well by changing $T_m - T_U$, but the data shown correspond reasonably well to the largest and smallest values that could be reached. It was tentatively concluded that this bistability, or stability range, might be due to a “chimney effect”, where the very small difference in average density of the sample gas and the gas in the Uboot (which exists when $T_m \neq T_U$) caused a flow through the 1 mm gap which would be upward for $T_m > T_U$ and downward for $T_m < T_U$. It is unclear why such a small perturbation should cause such dramatic changes of

Figure 1. The reduced Nusselt number $\text{Nu}/\text{Ra}^{0.3}$ as a function of the Rayleigh number Ra on a logarithmic scale. The dashed, solid red, and solid black lines correspond to $\gamma_{\text{eff}} = 0.308, 0.250$, and 0.355 respectively in the power law $\text{Nu} = N_0 \text{Ra}^{\gamma_{\text{eff}}}$. The purple solid line corresponds to $\gamma_{\text{eff}} = 0.318$. (a): Data from the “open” sample (see text). The various symbols and colors are for data taken at various pressures and operating conditions. One sees that there are two or more branches. The lower (upper) one was attained when the mean sample temperature T_m was higher (lower) than the Uboot temperature T_U. Values of Nu between the two extremes could be attained as well by changing $T_m - T_U$, but the data shown correspond reasonably well to the largest and smallest values that could be reached. It was tentatively concluded that this bistability, or stability range, might be due to a “chimney effect”, where the very small difference in average density of the sample gas and the gas in the Uboot (which exists when $T_m \neq T_U$) caused a flow through the 1 mm gap which would be upward for $T_m > T_U$ and downward for $T_m < T_U$. It is unclear why such a small perturbation should cause such dramatic changes of
the heat transport, by a factor of 1.7 or so at the largest Ra. Apparently the system becomes extremely sensitive to external perturbations at these large values of Ra.

4. Results for the “closed sample”

In order to avoid the “chimney effect” discussed above, the sidewall of the sample was sealed completely to the top and bottom plates. We shall call this the “closed sample”. To permit the filling of the sample with gas, we provided a 2.5 cm diameter tube which passed through the sidewall at mid height. One tube end was accurately flush with the inside of the wall. The tube extended outside the sidewall for several cm through a hole in a side shield before it entered a remotely operable valve. Now the filling of the Uboot and sample cell with gas had to be carried out quite slowly to avoid excessive pressure differentials; it typically took two or more days. Once filled, a desired temperature difference between the top and bottom plates was applied with the valve open, and after equilibration for about 12 hours the valve was closed and all desired measurements were made. Data obtained in this manner are shown in Fig. 1b as colored symbols. Also shown there, for comparison, are the data from Fig. 1a, but these "open cell" data are now given as black symbols. We see that the upper branch, obtained with $T_m - T_U > 0$, is similar to that found for the open sample; but now the lower branch no longer exists. Instead the purple and red points, obtained with $T_m - T_U < 0$, suggest that the “classical” state with laminar boundary layers continues to exist up to much larger Ra when $T_m > T_U$. At present we have no experimentally supported explanation for the difference between the upper and the classical branch. The upper branch, both for the open and the closed sample, corresponds to $\gamma_{eff} \simeq 0.36$ (black solid line), which is significantly larger than the value near 0.31 obtained from numerous measurements at lower Ra but a bit smaller than the value 0.38 often associated with the high-Ra regime predicted by Kraichnan (1). The classical branch, on the other hand, is fit well by a power law with $\gamma_{eff} = 0.318$ (purple solid line), which is quite consistent with effective exponents obtained in numerous smaller-Ra measurements.

We note with interest that a possible theoretical explanation for the existence of different branches of Nu(Ra), with values for γ_{eff} in the range from about 0.14 to about 0.38, has been given in a recent paper by Grossmann and Lohse (2).

5. Acknowledgment

We are very grateful to the Max-Planck-Society and the Volkswagen Stiftung, whose generous support made the establishment of the facility and the experiments possible. The work of G.A. was supported in part by the U.S National Science Foundation through Grant DMR07-02111. We are very grateful to Andreas Kopp, Artur Kubitzek, Holger Nobach, and Andreas Renner for their enthusiastic technical support, and to Holger Nobach for his role in developing the SF$_6$ system.

References

