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Summary . After a brief review in the Intro duction of the major breakthroughs in the
study of Rayleigh-Benard convection (RBC) since the experiments of Henri Benard,
a few selectedtopics are preserted in more detail. The e ect of thermal noise on the
bifurcation to convection is discussedbecauseexperimental work on this is quite recert
and as yet incomplete. Examples of spatio-temporal chaos are examined becausethis
interesting nonlinear state is as yet incompletely understood. The e ect of rotation
on RBC is preserted becausesome of the experimental results disagree with modern
theories.

1 Intro duction

Convection in a shallow horizontal layer of a uid heated from below had been
obsened on seweral occasionsduring the 19" Century.[1] However, the carefully
controlled and quartitativ e laboratory experiments of Henri Benard [2] focused
the interests of other sciertists on this fascinating problem. Benard studied the
patterns of the corvective ow in the presenceof a free upper surface, using a
variety of uids with di erent viscosities.He made quartitativ e determinations
of the deformation of the upper surface,of the characteristic length scalesof the
pattern, and of the direction of ow within the uid. Although we now know
that the beautiful hexagonalpatterns obsened by Benard [3] were causedby
the contribution of a temperature dependert surfacetension, these experiments
werethe direct motivation of Lord Rayleigh's seminalstability analysis[4] for the
caseof free horizontal boundariesin the absene of surfacetension. Rayleigh's
opening remark in his paper in The London, Edinburgh, and Dublin Philosophi-
cal Magazineand Journal of Sciene was'"The presert is an attempt to examine
how far the interesting results obained by Benardin his careful and skilful exper-
iments can be explained theoretically”". Lord Rayleigh recognizedthat there is a
nite value of the temperature dierence T = T . for the onsetof convection,
and that the important combination of parameterswhich determinesthe onset
is

gaET

R = 1)

where s the isobaric thermal expansioncoe cient, the thermal di usivit v,
the kinematic viscosity, d the spacingbetweenthe plates, g the accelerationof
gravity,and T the temperature di erence. We now referto R asthe "Rayleigh
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number”. Lord Rayleigh alsofound that the instabilit y occursat nite wavenum-
ber k¢, and that it is a stationary instability (i.e. that the relevant eigervalues
are real). For the free boundary conditions tr@t_ he used he was able to obtain
the analytic results Rc = 27 *=4 and ke = = 2.

Fig. 1. Left: hexagonal pattern of non-Boussinesgconvection in compressedSFg near
its critical point (from [6]). Middle: roll pattern for a Boussinesq uid (from [7]). Right:
Square pattern in binary-mixture convection (from [8]).
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Fig. 2. Nusselt number measuremers using ethanol in a circular cell with d = 1:54
mm and diameter D = 88 mm. Open (closed) circles: increasing (decreasing) T (from
[14)).

The problem caugh the attention of other giants in the eld during the
next sewral decades.Here | mertion only a few highlights. Rayleigh's work
was followed by the stability analysis for more realistic rigid boundariesby Sir
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Harold Je reys, [5] which (after some numerical problems) yielded the values
R¢ = 1708and k¢, = 3:117relevant to experiments using uids con ned between
well-conducting solid parallel plates. There was a number of other milestones.
Particularly noteworthy on the theoretical side werethe rst weakly non-linear
analyseswhich led to predictions of the stable convection patterns. On the basis
of the linear stability analysisof Lord Rayleigh or Sir Harald Je reys oneknows
the magnitude of the critical wave director, but one can not decide whether
the patterns above onset will consist of rolls, hexagons,or squares.Indeed all
three patterns occur in RBC asillustrated in Fig. 1,[6, 7, 8] albeit under di erent
circumstances.Malkus and Veronis[9] predicted that the stable planform for the
caseof free boundariesand Boussinescconditions [10, 11] should be straight rolls
rather than e.g. squaresor hexagons.The foundation for much of the \mo dern"
work on Rayleigh-Benard convection was laid during the 1960'sby the weakly
nonlinear analysis of Schluter, Lortz, and Busse(SLB) [12] for rigid boundaries,
which predicted stable straight rolls above onsetalso for this realistic case.This
prediction is in agreemem with experiment, asillustrated by the middle pattern
of Fig. 1 as well as by numerous other experiments. SLB also establishedthat
the bifurcation to RBC is supercritical, and gave the initial slope S; of the
Nusseltnumber N  Qd=T =1+ S; + O(?) ( isthe conductivity of the
quiescen uid and Q is the heat current density). This wasconsistert with early
measuremets, for instance with those of Silveston [13]. Modern measuremets
like those shawvn in Fig. 2, [14] even within their much greater resolution, are
also consistent with a supercritical bifurcation. Howewer, the experimertal value
of S; varies somewhatfrom one experimert to another and is always somewhat
lower than the theoretical prediction (for the data in Fig. 2 S; = 1:28 whereas
the prediction is S; = 1:43). Possibly this problem is due to boundary e ects at
the sidewall, but this issueis not ertirely settled. Conceptually the next great
step forward wasthe realization by Swift and Hoherberg[15] that the bifurcation
to RBC, shown by SLB to be supercritical in the deterministic system,becomes
subcritical in the presenceof thermal noise.Although at the time the rst-order
nature of the transition was believed to becomesigni cant only within a part
per million or soof the transition, thus being out of reach of the experimentalist,
good evidencefor it has beenobtained in very recert experiments [16].

Equally important were seminal experimental cortributions during the rst
v e or six decadesfollowing Benard's work. Here | mertion only a couple. The
heat transport measuremets of Schmidt and Milv erton [17] con rmed the pre-
diction R, = 1708with an accuracy of better than 10 %. The extensive experi-
mernts of Silveston[13] already mentioned above provided data for N from below
onsetto R' 5 10°. Silveston also visualized the corvection patterns in his
apparatus, using the shadongraph method which has becomeso very important
in more recert times [18, 19, 20]. For additional historical notes, the reader may
wish to consult the article by P. Mannevill in this volume, and the informativ e
book by Chandrasekhar[1].

During the last three decadesRayleigh-Benard corvection (RBC) has be-
come a paradigm for the study of pattern formation [21]. It reveals numerous
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interesting phenomenain various rangesof T =T . 1. Many of thesephe-
nomenahave beenstudied in detail recertly, using primarily compressedjasesas
the uid, sensitive shadavgraph o w-visualization, digital image analysis, and
quantitativ e heat- ux measuremets [19, 22]. | briey mention some of them
here, and then discussa few of thesein greater detail in separatesectionsbelow.

Even below onset, thermally driven uctuations of the temperature and ve-
locity elds about their pure conduction averagesprovide a fascinating example
of critical phenomenain a non-equilibrium system. Already 27 yearsagoit was
predicted by Swift and Hoherberg [15] that these uctuations should alter the
nature of the bifurcation to RBC, making it subcritical and thus analogousto
a rst-order phasetransition in equilibrium systems.Very recert measuremets
[16] suggestthat this is indeed the case.

Above but closeto onset the pattern for a Boussinesqsystem consists of
straight rolls (see Fig. 1 middle), possibly with some defects induced by the
sidewalls [23]. When non-Boussinesqconditions prevail, a pattern of perfect,
defect-freehexagonsewlves (seeFig. 1 left).

Further above onset, for > 0:5 or so, an interesting qualitativ ely di erent
state of spatio-temporal chaos, known as spiral-defect chaos (SDC), occurs in
systemswith Prandtl numbers = of order one or less.[24] This state
is a bulk property and not sidewall induced; it has been studied intensely by
theorists as well as experimentalists.

Similarly, RBC was usedto study the onsetof time dependenceover a wide
range of . [25, 26] Temporally periodic or chaotic patterns were found for >
O(1), with the onsetoccurring at smaller for smaller . However, quartitativ e
studies like those carried out for SDC are still lacking at larger

The system becomesmore complex and interesting even near onset when it
is rotated about a vertical axis with an angular velocity . For that caseit was
predicted [27, 28, 29] and found experimertally [30, 31, 32 that, for > ¢, the
primary bifurcation from the conduction state remains supercritical and leadsto
parallel rolls which are unstable The instability is to plane-wave perturbations
with a wave-director angle which is advancedrelative to that of the rolls by an
angular incremernt g in the direction of . This phenomenonis known asthe
Kuppers-Lortz (KL) instability. The pattern consistsof domains of rolls which
incessatly replaceead other, both by irregular domain-wall motion and by the
KL medanism. The spatial and temporal behavior suggeststhe term \domain
chaos" for this state. Sincethis example of spatio-temporal chaosoccursdirectly
at onset,it shouldbe more accessiblgo theoretical elucidation than, for example,
the spiral-defect chaos mentioned above.

Theoretically, the KL instabilit y is expectedto persist near onsetup to large
values of . Thus it was a surprise that the patterns found in experiments
near onset changed dramatically when  was increased.[33 For 70, there
was no evidenceof the characteristic domain chaos until  was increasedwell
above 0.1. At smaller , four-fold coordinated cellular patterns, and in some
parameter rangesslowly-rotating, aesthetically appealing, square lattices, were
encourtered.



Rayleigh{B enard convection 5

Relatively unexploredare experimental opportunities which RBC hasto o er
in the range of well below unity. Pure uids (with rare exceptions[34]) have

0:7. Recertly it wasshown [35, 36] that smallervaluesof canbereadcedby
mixing two gasespnewith alarge and the other with a small atomic or molecular
weight. The most extreme example readily available is a mixture of H, and Xe.
Prandtl numbers as small as 0.16 can be reached. In the range 0:6, seweral
interesting new phenomenaare predicted to occur. [29, 37, 38] In the
plane they include subcritical bifurcations below a line of tricritical bifurcations,
Hopf bifurcations to standing waves,a line of codimension-two points where the
Hopf bifurcation meetsthe stationary bifurcation, and a codimension-threepoint
where the codimension-two line and the tricritical line meet.

Another rich and interesting modi cation of the Rayleigh-Benard system s
achieved by inclining the layer relative to gravity. [39, 40, 22] This adds the tilt
angle asan additional parameter. In this casethe basic state consistsof heat
conduction and a parallel shear o w which breaks the rotational invariance of
the usual RBC. Depending on and , longitudinal, oblique, transverse,and
travelling transverserolls are the possible o w structures at onset.

No doubt | neglectedto mertion additional important topics assaiated with
RBC. Nonetheless,at this point we will proceedto a somewhat more detailed
review of a few of the phenomanalisted above which | have found particularly
interesting.

2 Fluctuations near the Onset of Convection

In the usual deterministic description of RBC, basedon the Boussinescpr Navier-
Stokes equations, all velocities vanish below the onset of convection and the
temperature is given by the pure conduction prole. Howewer, the Brownian
motion of the atoms or moleculeswhich occurs becausethe systemis at a nite
temperature leadsto uctuations of the temperature and velocity elds which
have zero mean but nite mean square. When the uctuation amplitudes are
small enough, their interactions with ead other can be neglectedand the am-
plitudes can be described well by stochastic linearized hydrodynamic equations.
[41] To my knowledge, the rst spatially extended non-equilibrium system for
which quartitativ e measuremets of these uctuations were made was electro-
convection in a nematic liquid crystal [42]. Soon thereafter, thermally driven
uctuations were obsened also for RBC, [43] and quartitativ e measuremets
of their amplitudes were made. [44, 45] In part these measuremeits were made
possible by the developmen of experimental techniques for the study of RBC
in compressedyases.[2319] There it is possibleto use samplespacingsan order
of magnitude smaller than for convertional liquids and kinematic viscositiesare
relatively small, thus making the systemsmore susceptibleto noise.In addition,
maximizing the sensitivity of the shadonvgraph method and careful digital image
analysis have enhancedthe experimental resolution.[19

In the left part of Fig. 3 we show a processedimage of a layer of CO, of
thickness0.47mm at a pressureof 29 bars and at a meantemperature of 32.0 C.



6 G. Ahlers

Fig. 3. Left: Shadowngraph snapshot of uctuations below the onset of convection
( = 3 10 4. Right: The average of the square of the modulus of the Fourier

transform of 64 imageslike that on the left. After [44].

- £

Fig. 4. Mean square amplitudes of the temperature uctuations below the onset of
convection of a layer of CO; of thickness0.47 mm and a mean temperature of 32 C.
The solid (open) circles are for a sample pressureof 42.3 (29.0) bars. The two lines are
the theoretical predictions. Note that there are no adjustable parameters. After [44].
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The samplewasat = 3 10 *, very closeto but just below the bifurcation
point. The uctuating pattern is barely detectable by eye. The right half of
the gure shows the average of the structure factors (squares of the moduli
of the Fourier transforms) of 64 such images. It demonstratesclearly that the
uctuations have a characteristic wavenumber g. The value of g is in quantativ e
agreemen with the critical wavenumber g = 3:117for RBC. The ring in Fourier
spaceis azimuthally uniform, re ecting the cortinuous rotational symmetry of
the RBC system.

The power contained within the ring in Fourier spacecan be converted quan-
titativ ely to the mean-squareamplitude of the temperature eld.[44, 19, 22] Re-
sults for the temporal and spatial averagesh T?2i of the squareof the deviations
of the temperature from the local time average(pure conduction) asa function of

at two di erent sample pressuresare shown in Fig. 4 using logarithmic scales.
The data can be described quite accurately by straight lines with slopescloseto
-1/2, consistent with the powerlaw h T2i / 172 aspredicted by linerar theory.

The amplitudes of the uctuating modes below but closeto the onset of
RBC werecalculated quartitativ ely from the linearized stochastic hydrodynamic
equations[4] by van Beijeren and Cohen[4§, using realistic (no-slip) boundary
conditions at the top and bottom of the cell. For the mean squaretemperature

uctuations their results give[47, 44]

T. 2 F

hT2()i= & R P

)

with e= 3qcp Rc = 38528.Here R, = 1708is the critical Rayleigh number, and

the noiseintensity F is given by

_ ksT 2 G |
F - d 2 (o] ORC , (3)
with o= 0:385and ,' 0:0796.0ne seesthat F dependson the density and
kinematic viscosity , aswell ason the Prandtl number = =Dt (Dt isthe

thermal di usivit y). Using the uid properties of the experimertal samples,[19
oneobtains the straight linesin Fig. 4. Sincethere are no adjustable parameters,
the agreemen betweentheory and experiment canbe regardedasexcellen. This
agreemen lends strong support to the validity of Landau's stochastic hydrody-
namic equations[4].

Sucien tly closeto the bifurcation, where uctuation amplitudes become
large, nonlinear interactions betweenthem play a role and linear theory breaks
down. In this regime geruine critical phenomenawhich dier from the linear
predictions are expected, and the precisecritical behavior should depend on the
symmetry properties and the dimensionality of the system. Deviations from the
prediction of linear theory have beenobsened recertly for electroconvection in
nematic liquid crystals [48, 49] which is exceptionally susceptibleto the in uence
of thermal noise. Unfortunately to this day there are no predictions of the crit-
ical phenomenato be expected for this interesting group of systems.For RBC,
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Swift and Hoherberg wereableto show that the systembelongsto the sameuni-

versality classas one consideredby Brazovskii.[15, 47, 50] Equilibrium systems
belongingto this classinclude the crystallization of di-block co-polymers.[5] For
this universality classthe transition is of secondorder at the mean- eld level,
but the uctuations induce a rst-order tarnsition. A common feature of all the
systemsbelonging to this classis that the order parameter near the bifurcation

has a relatively large volume of phase spaceaccessibleto it. In the RBC case
this is re ected in the rotational invariance of the systemasdemonstratedby the
ring in Fourier spaceshown in Fig. 3. On the basisof this qualitativ e considera-
tion onewould not expect the electrocornvection systemmentioned above[48 49
to belongto the Brazovskii universality classbecausethe anisotropy due to the
director leadsto only one or two pairs of spots in Fourier space.

T (°C)

46.0

r (g/lem?d)

Fig. 5. The temperature-density plane near the critical point of SFs. The dashedline
is the coexistence curve separating liquid and vapor. The vertical dotted line is the
critical isochore. The solid circle is the critical point T, = 45:567 C, P, = 37:545 bars
and = 0:742g/cm?. The solid lines represert the isobars P = 38:10 bars (lower line)
and 39.58bars (upp er line) usedextensively in experiments. The heavy solid lines, each
ending in two circles, illustrate the density range spanned during measuremens with
T ' T . for acell of spacingd = 34:3 m (lower line) and d = 59:1 m (upper line).

For RBC in ordinary liquids one can estimate[15 that nonlinear uctuation
e ects should be obsenable typically only for j j 10 8, which has not been
accessibleo experimerts sofar. For RBC in compressedjaseghe critical region
is a bit wider, reaching asfar out asj j' 10 ®; but ascan be seenfrom Fig. 4,
this too hasbeenbeyond experimental resolution. However, the situation is much
more favorable near a liquid-gas critical point (CP). [16] Part of the reasonfor
this can be seenby inspecting Eq. 3. and the phase diagram of SFg shown
in Fig. 5. In that gure we seethe temperature-density plane near the CP.
The vertical dotted line corresponds to the critical isochore, and the two solid
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lines are isobars. As the CP is approadcied on the critical isochore from higher
temperatures, the viscosity has only a mild singularity and remains nite,

whereasthe Prandtl number = =Dt divergesbecausethe thermal di usivit y
D+ vanishes.Thusthe divergenceof at nite leadsto a divergenceof F.[52]
An equally important aspect is, however, that the uid properties are suc that
typical sample spacingsd which can be usedare in the range of 10to 100 m,
thus increasing F by one or two orders of magnitude comparedto liquids and
compressedgasesaway from the critical point. Another factor which greatly
increasesthe experimental shadovgraph resolution near the CP is the value of
the temperature derivative of the refractive index dn=dT. Typically we have
jdn=dTj ' 0:1, whereasfor ordinary uids it tendsto be two or three orders of
magnitude smaller.

Fig. 6. Shadowgraph images (top row) of a 1:28 1:28 mm? part of a sample with
d = 343 m, and the moduli of their Fourier transforms (bottom row). From left to
right, the imagesare for = 0.008,-0.001, and -0.047. The mean temperature and the
pressure corresponded to the critical isochore at T = 46:22 C. Adapted from Ref. [16]

In Fig. 6 we show shadonvgraph snapshotsof uctuations and roll patterns
for a cell of spacingd = 34.3 m at a pressureP = 38:10 bars corresponding to
the lower isobar shown in Fig. 5. [16] The meantemperature T = 46:22 C was
kept constart during the experiment and had a value which correspondedto the
critical isochore. When the applied temperature di erence wasequalto T . =
0:131 C, the sample occupied the heavy section of the line represerting the
isobar. The theoretical value of F was5 10 * for this case.The imagesare for
sewral values.The bottom row shows the moduli of their Fourier transforms.
Just above onset the pattern consistedof convection rolls, as predicted for the
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Fig. 7. Shadowgraph power P as a function of T =T ¢ 1 for the experiment

of Fig. 6 on a) linear and b) logarithmic scales.Solid lines: t of the Swift-Hohenberg
prediction [47] to the data. From Ref. [16]

Fig. 8. Patterns from a sample with d = 59 m at = 0:009. (a): image of size
1.92 1.92 mm? and b) the modulus of its Fourier transform. (c): the 0.96 0.96 mm?
area inside the square in (a). (d): same area as (c), but after a bandpass Iter was
applied around the Fourier-transform peaks of (b). (e): amplitude of the rolls of (a)
obtained by Fourier-transform demodulation. (f): director angle of (a). Adapted from
Ref. [16]
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deterministic system.[13 Consistert with the Swift-Hohenberg prediction of a
rst-order transition, there wasa sharp transition from a pattern of rolls to one
of disordered uctuating cellular structures as T was decreasedbelowv T ..

Figure 7 givesresults for the shadovgraph power (the squareof the modulus
of the Fourier transform) as a function of . One seesa dramatic changein the
powerat = 0.The solidlinesarea t of the prediction of Swift and Hoherberg
to the data. This t yieldedF = 7 10 4, in good agreemem with the prediction
basedon the uid properties.

Aside from the order of the transition, an issue of considerableinterest is
the nature of the ordered state (i.e. the rolls) above onset. In Fig. 8 we showv an
example.[16] One seeghat the rolls reveal seeral typesof disorder. Particularly
in the enlargedimage Fig. 8cit can be seenthat the rolls were modulated along
their axis. This was the result of the superposition of uctuations of random
orientation. As seenin Fig. 8d, it could be removed by band-passFourier Itering
with the lters certered on the two peaks of the transform shown in Fig. 8b.
A secondtype of disorder took the form of an amplitude modulation which
varied irregularly in time and space.A snapshotof the roll amplitude, obtained
by Fourier demadulation, is showvn in Fig. 8e. A third type of disorder took
the form of roll undulations; i.e. a variation of the angle of the roll director
along the roll axis. A grey-scalerendering of the director angle, obtained from
a local wavedirector analysis [55], is shovn in Fig. 8f. We seethat both the
roll amplitude and the director-angle modulation are correlated over relatively
long distancesin the direction of the wave director, and vary much more rapidly
along the roll axis. Someof this noise-induceddisorder had beenanticipated by
Toner and Nelson,[56] and should have a commonality with disorder near phase
transitions in other two-dimensional systems.
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Fig. 9. Shadowgraph imagesofa 1:92 1:92 mm? part of a samplewith d = 59 m and
a pressureof 39.58 bars. Left: = 0:0015.Right: = 0.0025.The mean temperature
was 48.3 C.
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Interestingly, rolls are encourtered above the bifurcation only whenthe mean
sampletemperature is such that the density correspondsto the critical density.
Figure 9 shows the uctuations just below (left image) and the ordered pattern
just above (right image) the bifurcation for an experiment in which the mean
temperature was 48.3 C. [6] At the pressureof the experiment (39.58 bars) the
critical density would have beenachieved at 48.0 C. One seeghat a dislocation-
free lattice of hexagonsforms. Although the hexagonsare reminiscert of Henri
Benard's beautiful patterns, they have their origin in non-Boussinesge ects
[57, 58] whereasBenard's hexagonswere causedby a temperature dependert
surface tension. Measuremens of the hysteresisassaiated with the formation
and disappearanceof the hexagonsin Fig. 9, as well as a transition to rolls at
larger , werein quite good agreemeih with predictions basedon the determin-
istic equations of motion [57] even though uctuations were presert. [59]

3 Deterministic  patterns

When the e ectiv e noiseintensity is relatively small, the systemabove onsetcan
be understood in terms of the deterministic equationsof motion. The formation
of deterministic patterns takes many forms and depends on sudh parameters
as the Prandtl number, the aspect ratio, and the shape of the sidewalls. Any
attempt at a thorough review is well beyond the scope of this article. As an
example of the richnessof pattern-formation phenomenawhich are encourtered
I show in Fig. 10 some shadavgraph imagesfor = 1.0and = 287 in a
cylindrical cell. [60] For this caseF = 1 10 7, and stochastic e ects do not
play an important role. The patterns were obtained with compressedCO, asthe
uid, but the valuesof and are fairly closeto those studied by Croquette
and coworkers [23] using Argon under pressureand to those of Hu et al. [6]]
using CO,. Someof Croquette's results are showvn in the chaper by Manneville
in this volume. Croquette found that a time independert pattern existed only
closeto onset, roughly for < 0:12. As increased,the rolls developed an
increasingtendencyto terminate with their axesorthogonal to the sidewall. The
consequen roll curvature and the assaiated mean o w causeda compressionof
the rolls near the cell certer. For closeto 0.12 the wavenumber in the interior
crossedthe skewed-varicoseinstabilit y-boundary [62] and a temporal succession
of dislocation pairs wasformed, thus rendering the pattern time dependen. Most
likely this processprovides the explanation of the time dependenceobsened
closeto onset by heat-transport measuremets in early cryogenic convection
experimerts. [63, 64]
As increased,the patterns becamemore complexasillustrated in Fig. 10for
= 0:45. Typically three wall foci existed at this point. Becauseof the assaiated
roll curvature there were mean- ow elds emanating from the foci. These o ws
were strong enoughto causea contin uous emissionof traveling corvection rolls
from the foci, leading to a complicated dynamics in the cell interior.[61] These
patterns were,however, sidewall induced and not intrinsic to the interior of avery
large system. This was showvn in an experiment where the walls were replaced
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Fig. 10. Shadowngraph imagesfor CO, at a pressureof 33.25 bars and mean temper-
ature of 21.16 C in a cell with d = 1:5 mm and aspect ratio = 287. The Prandtl
numberwas1.0and T . wasfound to be 0.317 C. The number near each image gives
the valueof = T =T . 1. After Ref. [60]

by a very gertle radial ramp in the cell spacing which led to a region of pure
conduction surrounding the corvecting interior. [7] An example of a pattern in
this system,for = 0:21,is shown in the middle of Fig. 1. In that caseonefound
time independert near-perfect rolls without defectsand with relatively little roll
curvature.

Somewherenear = 0:8 a new phenomenonoccurred. Small spirals formed
in the interior, asillustrated in Fig. 10 for = 0:74 and 1.21. The formation of
these spirals was an intrinsic property of the bulk convection system and was
not induced by the sidewalls. This state, known as spiral-defect chaos, has been
known to exist only for the last decadeor so[24] and is discussedin more detalil
in Sect. 4.2 below.

As increasedfurther, the structures becamemore disordered and the spi-
rals were a less dominant feature as seenat = 2:47. The next interesting
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phenomenonwas rst noticeable for = 4:68, and became more pronounced
as increasedto the larger values. This was a transverse perturbation of the
convection rolls by a moduation which had a relatively short wavelength. This
new feature was due to the oscillatory instabilit y predicted by Clever and Busse.
[65] Thesetransversemodulations of the rolls were traveling waveswhich moved
along the roll axes.

The ewolution with increasing seenfor the last three patterns is remarkable.
Although the patterns becamemore complex in the sensethat the oscillatory
modulation becamemore pronounced, on a coarse-grainedscalewhich averages
over the traveling wavesthey becamesimpler again. Thus, the pattern at = 11.6
was not unlike the onefor = 0:45; both had three wall foci and similar defect
structures in the interior. It would be niceto be ableto understandthis reduction
of complexity with increasingstress.

4 Spatio-temp oral chaos

4.1 Early Measuremen ts

The early 1970'sbrought a broad survey over a wide range of Prandtl numbers of
the occurrenceof time dependert patterns in RBC [25, 26]. At about that time
quantitativ e studies of the statictical properties of spatio-temporal chaos(STC)
for nearonewerecarried out on RBC at cryogenictemperatures.|[66, 67, 68, 69
This early work was followed soon by quartitativ e measuremets [70, 71] on
temporal chaos in systems without signi cant spatial extent which, for some
time, attracted far more attention becausethey made contact with concurrert
theoretical developmerts [72]; this interaction betweentheory and experiment
revived the eld of dynamical systemsas a branch of physics. [73] By now this
eld hasreadched a certain level of maturit y. Here | want to examine someof the
experimental results on chaosin systemswith signi cant spatial variation. For
thesethe level of theoretical understanding is still much more limited than it is
for dynamical systems.[74]

Resultsfor the time-averagedNusseltnumber hNi during the early cryogenic
experiments (for which there was no ow visualization) are showvn in Fig. 11la
as a function of T =T . 1. A surprise at the time of those measuremeis
wasthat the corvection dependednon-periodically on the time t already at the
relatively small values ' 1. This is illustrated in Fig. 11b for a circular cell
with an aspectratio  (radius/height) = 5:3and = 1:23. The power spectrum
of N (t) was broad, with a maximum at the frequencyf = 0, and for large f
it fell o asf “ asshown in Fig. 11c. The experimentally obsened algebraic
fallo was surprising becausesimple models of chaosin deterministic systems
with relatively few degreesof freedom, such as the Lorenz model, have a spec-
trum with an exponertial fallo. [75, 76] It seemslikely [67] that the onset of
time dependencewas assaiated with an adjustment of the wavenumber k as
a function of which causedthe systemto crossan instabilit y boundary, from
our presern vantage point most likely the skewed-varicose (SV) instabilit y. [62]
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f [Hz]

Fig. 11. Results from RBC at cryogenictemperatures. (a): the time-averaged Nusselt
number as a function of . (b): typical deviations of the Nusselt number from its mean
for = 1:23 asa function of time. (c): the power spectrum of a longer sequenceof data
like thosein (b) for = 1:23. After Ref. [68].

The apparertly algebraicfallo of the spectrum presumably is then attributable
to the presenceof a large number of chaotic interacting modesin the spatially
extended system which turns out to lead to e ectiv ely algebraic decay [75, 76]
over the experimentally accessiblerange of f ; but sofar as| know a quartita-
tive explanation of this phenomenonis still lacking. In a qualitativ e sensethis
suggestionthat many modes comeinto play as the spatial extent increasesis
an early indicator that spatio-temporal chaosis high-dimensional, and perhaps
extensivein the sensethat the number of modes (or basis functions) neededto
describe it is proportional to (or at least increaseswith) the systemsize.[77]

In order to provide a quartitativ e characterization of the chaotic state, the
squareroot of the variance \ of N (t) aswell asthe rst momert f, of its power
spectrum were determined as a funtion of R. As R increased,it turned out that
the chaotic state was entered with a discortinuous jump of  from zero, and
that f; was nite at onset. With increasingR, f; followed a powerlaw over the
two decadesl < < 200, with an exponert closeto 2/3. To this day | am not
aware of a theoretical explanation of theseinteresting quartitativ e experimental
results. It is alsonoteworthy that theseexperiments [66, 67] represert one of the
very early examplesof computer cortrol of experiments with automated data
acquisition. [78] Without this automation it would not have been possible to
obtain the results. Similarly, the usefor the analysis of experimental results of
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fast Fourier-transform techniques, which were still relatively new, was a novel
feature of this work.

Also still unexplained is the fact that the systemremainsin the chaotic SV-
unstable regime, instead of reducing its wavenumber so as to enter once more
a regime of stable rolls which is known to exist for smaller k [62]. This latter
phenomenonoccurs in the one-dimensional case of a narrow rectangular cell
where the SV instability leadsto the expulsion of a roll pair and a consequeh
reduction of the wavenumber. Presumably the persistert chaosis the result of
an asyet unknown wavenumber-selectionprocessin the two-dimensionalsystem
with circular sidewalls which forcesthe pattern to remain in the unstable regime.
Another feature of the data which was surprising at the time is that the chaos
in this systemwas not precededby periodic and/or quasi-periodic states which
were consideredtypical of low-dimensional chaotic systems.[70] The absenceof
these statesis consistert, however, with the crossingof an instabilit y boundary
which suddenly movesthe systeminto a regime of high-dimensional chaos.

4.2 Spiral-defect chaos

In spite of its provocative early results and numerous experimental advantages
[68, 69], the cryogenicwork on STC had its limitations becauseit did not per-
mit o w visualization. Modern experiments on RBC near ambient temperatures
have used the shadovgraph method [18, 19 to visualize the temperature eld
assaiated with the convection. Recent experiments on RBC in compressedjases
with Prandtl numbers closeto oneled to the discovery [24] that a chaotic state
called \spiral-defect chaos" (SDC) is entered at modest when is large. An
example of a shadonvgraph image of SDC is shown in Fig. 12a. SDC consistsof
many small spirals, targets, and other defectsin the roll structure. The defects
have a modest lifetime and drift about irregularly, and new onesare constartly
created as old onesdisappear. The spirals co-exist with regions of more or less
straight rolls. For the value of Fig. 12a these regions have a width of only
a few wavelengths; but near the onset of SDC, and particularly for very-large
aspect-ratio cells [79], the straight-roll regionscan becomequite large. By now
the SDC state hasbeenstudied in other experiments which are too numerousto
list at this point. A recert review of much of this work and numerousreferences
may be found in Ref. [22]. SDC also has beenfound in numerical solutions of
model equations [80, 81] and of the Boussinesqgequations [82]. Here | mertion
only oneinteresting aspect of this state. Figure 12b shows the azimuthal average
of the structure factor S(k) (square of the modulus of the Fourier transform)
of SDC images.S(k) can be usedto compute the mean wavenumber k. Results
for k are shown as a function of in Fig. 12c. One can seethat all the results
for k lie well within the range where straight rolls are also known to be stable
[65, 62]. Thus we arrive at the interesting conclusionthat SDC is not caused
by a bulk instability of the straight-roll patterns as apparertly was the casein
the smaller-aspect-ratio cryogenic experimerts. Instead there is bi-stability of
SDC and the usual roll state, that is over a wide parameter range straight rolls
(a xed point) aswell as SDC (a chaotic attractor) are stable solutions of the
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equations of motion of the system. For Prandtl numbers closeto or lessthan
oneit turns out that the initial and boundary conditions of typical experiments
fall within the attractor basin of SDC, and that rolls without spirals are rarely
obsened for greater than someonsetvalue s. [83]

A quantitativ e understanding of SDC has not been achieved so far. The
problem is very di cult becausethe chaotic state ewolvesfrom a ground state
which is already extremely complex (see,e.g., the upper left image of Fig. 10).
However, someinsight into the dynamics of this state has beengained. Is seems
likely that mean- ow elds play a signi cant role. [84, 22, 85] A certral feature
of the dynamics seemsto be the competition betweentwo wavenumber selection
processes[81] The spiral tip selectsone wavenumber, and the far eld which is
dominated by a number of di erent defecttypesselectsanother. The resulting
wavenumber gradient orthogonal to the spiral arms leadsto outward traveling
waves surrounding the spiral tips which are equivalent to spiral rotation.
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Fig. 12. Spiral-defect chaos. (a): shadovgraph image for = 78, = 096, and

= 0:72. (b): structure factor S(k) of imageslike that in (a), but for = 0:46 (vertical
dotted lines are stability boundaries of straight rolls). (c): k as a function of (solid
lines are the Eckhaus and skewed-varicose instabilit y of straight rolls; horizontal bars
are the widths of S(k)). After Ref. [24].

5 E ect of Rotation

5.1 Domain Chaos

As merntioned in the Intro duction, RBC becomeseven more complex and inter-
esting when the sampleis rotated about a vertical axis. In that casethe Coriolis
force must be added to the equation of motion (the certrifugal force usually is
neglectedsince to lowest order it is balanced by a pressuregradient sustained
by the sidewall). The result is that, for > , the rolls that form above on-
set are unstable to plane-wave perturbations with a wave director which has a
characteristic angle ¢ | relative to the roll wave director. For 0:33, the bi-
furcation is expectedto be supercritical both below and above . Thusthe KL



18 G. Ahlers

instability o ers a rare opportunity to study STC in a system where the aver-
age ow amplitude ewlves continuously from zero and where weakly-nonlinear
theories are expected to be applicable. After receiving only limited attention
for seweral decades[27, 28, 29, 30, 86, 87, 88, the opportunity to study STC
has led to a recert increasein activity both theoretically and experimentally
[19, 31, 32, 89, 90, 91, 92, 93 94, 95. Indeed, as predicted theoretically,[27] the
straight rolls at the onset of corvection for > . are found to be unstable.
In the spatially extended system this leadsto the co-existanceof domains of
rolls of more or lessuniform orientation with other domains of a di erent ori-
entation. [30, 86] A typical exampleis shown in Fig. 13b. The replacemen of
a given domain of rolls proceededprimarily via domain-wall propagation. More
recerly the KL instabilit y wasinvestigatedwith shadavgraph o w-visualization
very closeto onset. It was demonstrated that the bifurcation is indeed super-
critical, and that the instabilit y leadsto a contin uous domain switching through
a medhanism of domain-wall propagation also at small .[96, 31, 97, 32] This
qualitativ e feature has beenreproduced by Tu and Cross[9] in numerical so-
lutions of appropriate coupled Ginzburg-Landau (GL) equations, as well as by
Neufeld et al.[93] and Crosset al.[94] through numerical integration of a gener-
alized Swift-Hohenberg (SH) equation. There is, however, also a cortribution to
the dynamics from nucleation of dislocation pairs via the KL mecanism.[99

(@) (b) ()

Fig. 13. Convection patterns for small . (a) is for = 0 and Ar gaswith = 0:69
and = 0:07 (from Ref. [35]). It shows the predicted [12] straight-roll pattern. (b) is
for = 1514 and CO; at a pressureof 32 bar with = 1:0 and = 0:05 (from Ref.
[31]). It is a typical pattern in the Keppers-Lortz-unstable range. (c) is for Argon at
40 bar with = 0:7, = 145,and = 0:04 (from Ref. [33]); it shaws no evidence of
the Keppers-Lortz instabilit y, and instead consists of a slowly-rotating square lattice.

Cerntral featuresof the KL STC are the time and length scalesof the chaotic
state near onset. The GL model assumesimplicitly a characteristic time de-
pendencewhich varies as ! and a correlation length which varies as 172,
Measuremetts of a correlation length given by the inversewidth of the squareof
the modulus of the Fourier transform as well as a domain-switching frequency
as revealed in Fourier spaceyielded the data in Fig. 14.[31, 97] These results
seemto be inconsistert with GL equations since they shaw that the time in
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Fig. 14. The characteristic frequencies! 5 (left) and lengths (right) of the KL state.
The data weredivided by -dependert constants ! ; and  soasto collapsethem onto
single curves. The dashedlines are shown for referenceand have the slopes1 for ! 5 and
-1/2 for which correspond to the theoretically expected exponerts of the time and
length scalesnear onset. The data sets cover approximately the range 14 20.
SeeRefs. [31], [97], and [32] for details.

the experiment scalesapproximately as 72 and that the two-point correlation
length scalesapproximately as 4. These results also dier from numerical
results basedon a generalizedSH equation[94 although the rangeof in the nu-
merical work is rather limited. We regard the disagreemen betweenexperiment
and theory as a major problem in our understanding of STC.

5.2 Square Patterns at Mo dest

Motiv ated by the unexpected scaling of length and time with  for the KL state
at 20, new investigations were undertaken recertly in which the range of
was signi cantly extendedto larger values. Contrary to theoretical predictions
[29, 37, 99] based on Galerkin proceduresand on the stability of appropriate
coupled GL equations,it wasfound[33 that for 70the nature of the pattern
near onsetchangedqualitativ ely although the bifurcation remainedsupercritical.
Squarepatterns like the oneshown in Fig. 13cwere stable, instead of typical KL
patterns like the onein Fig. 13b. The squaresoccurred both when Argon with

= 0:69wasusedand whenthe uid waswater with ' 5. They wereobsened
as well in He-Xe gas mixtures with ' 0:5. [L0(Q] For some parameter ranges
the lattice was quite disordered;but the four-fold nearest-neigtbor coordination
remained. The occurrence of squaresin this system is completely unexpected
and not predicted by theory; the KL instabilit y should continue to be found near
onset also at these higher valuesof . Thus the experiments have uncovered a
qualitativ e disagreemen with theoretical predictions in a parameter range where
one might have expected the theory to be reliable. Interestingly, very recert
direct numerical simulations basedon the Boussinesgequationshave reproduced
the squarepatterns near onset.[2]
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A further interesting aspect of the squarepatterns is that the lattice rotates
slowly relative to the rotating frame of the apparatus. This was found in the
experiments with Argon and water [33] as well asin the simulation [22]. Mea-
suremerts of the angular rotation rate ! of the lattice for the water experiment
are consistert with ! () vanishing as goesto zero. Thus the experimental re-
sults do ot necessarilyimply that the bifurcation to squaresis a Hopf bifurcation.
Quite possibly, asthe aspect ratio of the cell diverges,the slope of ! ( ) vanishes
sincean in nitely extended lattice can not rotate. Alternativ ely, of course,the
lattice might becomeunstable as becomeslarge. It would be interesting to
study the  dependenceof ! experimentally. To my knowledgethere is as yet
no theoretical explanation of this rotation.

5.3 The Range 0:16 < < 0:7

When a RBC systemis rotated about a vertical axis, the critical Rayleigh number
R¢( ) increasesR¢( ) is predicted to be independert of , and experiment [97]
and theory [1] for it arein excellent agreemen asshovn in g. 15a.For > 0:33
the bifurcation is expectedto be supercritical and to lead to KL chaosunless
is quite large. As discussedabove in Sect. 5.2, recernt experiments have shovn
that this is not the case;for 70 square patterns were found which are
unrelated to the typical KL domains. For large and < 0:68, the stationary
bifurcation is predicted [37] to be precededby a supercritical Hopf bifurcation;
but for > 0:33 experiments have not yet reached valuesof  su cien tly high
to encourter time-periodic patterns.

The experimentally accessiblerange 0:16 0:33is truly remarkable be-
causeof the richnessof the bifurcation phenomenawhich occur there when the
system s rotated. For instance, for = 0:26 there is arangefrom ' 16to
190 over which the bifurcation is predicted to be subcritical. This is shaovn by
the dashedsection of the curve in Fig. 15c. The subcritical range dependson
In Fig. 15b it coversthe area below the dashedcurve. Thus, the dashedcurve
is a line of tricritical bifurcations. It has a maximum in the plane, ter-
minating in a \tricritical endpoint”. An analysis of the bifurcation phenomena
which occur near it in terms of Landau equations may turn out to be interest-
ing. One may expect path-renormalization[101] of the classicalexponerts in the
vicinity of the maximum. We are not aware of equivalent phenomenain equi-
librium phasetransitions, although presumably they exist in as yet unexplored
parameter ranges.

At relatively large , the stationary bifurcation (regardlessof whether it is
super- or sub-critical) is predicted to be precededby a supercritical Hopf bifurca-
tion which is expectedto leadto standingwavesof convection rolls. [37] Standing
wavesare relatively rare; usually a Hopf bifurcation in a spatially-extended sys-
tem leadsto traveling waves.An exampleis showvn by the dash-dotted line near
the right edgeof Fig. 3b. As can be seenthere, the Hopf bifurcation terminates
at small at a codimension-two point on the stationary bifurcation which, de-
pending on , can be super- or sub-critical. The line of codimension-two points
is shawn in Fig. 15b as a dash-dotted line. One seesthat the tricritical line and
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Fig. 15. The bifurcation diagram for RBC with rotation about a vertical axis. (a.)
Experimental and theoretical results for R¢( ) obtained with water (open circles)
and Ar at three di erent pressures(triangles) on linear scales.After Ref. [33]. (b) The
theoretically predicted bifurcation diagram for RBC with rotation about a vertical axis.
The dashedcurve givesthe tricritical line. The dash-dotted line is the codimension-two
line where the Hopf bifurcation meets the stationary bifurcation (e.g. the solid circle
in (c)). For = 0:24 the codimension-two line intersects the tricritical line, leading to
the codimension-three point shown as an open circle in (c). The upper dotted line in
(b) corresponds to the path represeried in (c). The lower dotted line in (b) represerts
the lowest -value accessibleto experiment using gas mixtures. (c) Bifurcation lines
for = 0:26. The dashedline shows the range over which the stationary bifurcation is
subcritical. The two plussesare the tricritical points. The dash-dotted line at large
shows the Hopf bifurcation. From Ref. [38].

the codimension-two line meetat a codimension-threepoint, locatedat ' 270
and ' 0:24. We note that this is well within the parameter range accessible
to experiments. We are not aware of any experimentally-accessibleexamplesof
codimension-three points. This particular caseshould be accessibleto analysis
by weakly-nonlinear theories, and a theoretical description in terms of GL equa-
tions would be extremely interesting and could be comparedwith experimental
measuremets.

The -rangeofinterestis readily accessiblgo us by using mixtures of a heavy
and a light gas.[36 Valuesof vs.the mole fraction x of the heary componert
for a typical pressureof 22 bar and at 25 C are shown in Fig. 4. An important
questionin this relation is whether the mixtures will behave in the sameway as
pure uids with the same . We believe that to a good approximation this is the
casebecausethe Lewis numbers are of order one. This meansthat heat di usion
and massdi usion occur on similar time scales.In that case,the concertration
gradient will simply cortribute to the buoyancy force in synchrony with the
thermally-induced density gradient, and thus the critical Rayleigh number will
be reduced. Scaling bifurcation lines by Rc( ) ( is the separationratio of the
mixture) will mostly accourt for the mixture eect. To a limited extent we
showed already that this is the case.[35 36] In more recert work we have begun
to show that the bifurcation line R¢( )=R¢(0) is independert of . Nonetheless
we recognizethat a theoretical investigation of this issuewill be very important.
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Fig. 16. The Prandtl number as a function of the mole fraction x of the heavy
componernt for three gasmixtures at a pressureof 22 bar and at 25 C. From Ref. [36].

Assuming that the mixtures behave approximately like pure uids, we see
that the codimension-three point can be readhed using either H,-Xe or He-Xe
mixtures. The tricritical point can be reached also using He-SF;.

6 Conclusion

In thesefew pagesit hasbeenpossibleto touch only on a few of the interesting
aspects of RBC. Some others are discussedin this volume in the chapter by
P. Manneville; but even collectively thesetwo contributions do not constitute a
thorough review of the eld. Nonethelessit is clear that a certury of researh
sincethe original work of Henri Benard on this conceptually simple system has
strongly advancedour understanding of spatially extendednonlinear dissipative
systems.However, much remainsto be done. For example, the study of external
noise on the systemis in its infancy. We believe that the bifurcation to RBC
becomessubcritical in the presenceof noise, but the in uence of noise on the
\ordered" state (i.e. the convection rolls) has beenexamined only qualitativ ely.
It alsois apparert that there is a number of unsolved problems. Although we
have learned a lot from studies of SDC and domain chaos,the generalnature of
STC is not understood at a quartitativ e level. Important issuesare whether a
description in terms of generalprinciples, perhapsanalogousto those of equilib-
rium statistical mechanics, is on the horizon. [102 We also saw that there are
several speci ¢ issueson which theory and experimert conict. These include
the characteristic length and time scalesof domain chaos and the occurrence
at onset of squarepatterns in the presenceof rotation. It will be interesting for
future generationsof physiciststo seewhat the next certury will bring.
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