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Summary . After a brief review in the Intro duction of the major breakthroughs in the
study of Rayleigh-B�enard convection (RBC) since the experiments of Henri B�enard,
a few selected topics are presented in more detail. The e�ect of thermal noise on the
bifurcation to convection is discussedbecauseexperimental work on this is quite recent
and as yet incomplete. Examples of spatio-temporal chaos are examined becausethis
interesting nonlinear state is as yet incompletely understood. The e�ect of rotation
on RBC is presented becausesome of the experimental results disagree with modern
theories.

1 In tro duction

Convection in a shallow horizontal layer of a uid heated from below had been
observed on several occasionsduring the 19th Century .[1] However, the carefully
controlled and quantitativ e laboratory experiments of Henri B�enard [2] focused
the interests of other scientists on this fascinating problem. B�enard studied the
patterns of the convective o w in the presenceof a free upper surface,using a
variety of uids with di�eren t viscosities.He made quantitativ e determinations
of the deformation of the upper surface,of the characteristic length scalesof the
pattern, and of the direction of o w within the uid. Although we now know
that the beautiful hexagonal patterns observed by B�enard [3] were causedby
the contribution of a temperature dependent surfacetension, theseexperiments
werethe direct motivation of Lord Rayleigh's seminalstabilit y analysis[4] for the
caseof free horizontal boundaries in the absence of surface tension. Rayleigh's
opening remark in his paper in The London, Edinburgh, and Dublin Philosophi-
cal Magazineand Journal of Science was"The present is an attempt to examine
how far the interesting results obainedby B�enard in his careful and skilful exper-
iments can be explained theoretically". Lord Rayleigh recognizedthat there is a
�nite value of the temperature di�erence �T = �T c for the onset of convection,
and that the important combination of parameterswhich determines the onset
is

R =
�g d3�T

��
(1)

where � is the isobaric thermal expansioncoe�cien t, � the thermal di�usivit y,
� the kinematic viscosity, d the spacingbetweenthe plates, g the accelerationof
gravit y, and �T the temperature di�erence. We now refer to R as the "Rayleigh
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number". Lord Rayleigh alsofound that the instabilit y occursat �nite wavenum-
ber kc, and that it is a stationary instabilit y (i.e. that the relevant eigenvalues
are real). For the free boundary conditions that he used he was able to obtain
the analytic results Rc = 27� 4=4 and kc = � =

p
2.

Fig. 1. Left: hexagonal pattern of non-Boussinesqconvection in compressedSF6 near
its critical point (from [6]). Middle: roll pattern for a Boussinesquid (from [7]). Right:
Square pattern in binary-mixture convection (from [8]).
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Fig. 2. Nusselt number measurements using ethanol in a circular cell with d = 1:54
mm and diameter D = 88 mm. Open (closed) circles: increasing (decreasing) �T (from
[14]).

The problem caught the attention of other giants in the �eld during the
next several decades.Here I mention only a few highlights. Rayleigh's work
was followed by the stabilit y analysis for more realistic rigid boundaries by Sir



Rayleigh{B �enard convection 3

Harold Je�reys, [5] which (after some numerical problems) yielded the values
Rc = 1708and kc = 3:117relevant to experiments using uids con�ned between
well-conducting solid parallel plates. There was a number of other milestones.
Particularly noteworthy on the theoretical side were the �rst weakly non-linear
analyseswhich led to predictions of the stable convection patterns. On the basis
of the linear stabilit y analysisof Lord Rayleigh or Sir Harald Je�reys oneknows
the magnitude of the critical wave director, but one can not decide whether
the patterns above onset will consist of rolls, hexagons,or squares.Indeed all
three patterns occur in RBC asillustrated in Fig. 1, [6, 7, 8] albeit under di�eren t
circumstances.Malkus and Veronis[9] predicted that the stable planform for the
caseof freeboundariesand Boussinesqconditions [10, 11] should be straight rolls
rather than e.g. squaresor hexagons.The foundation for much of the \mo dern"
work on Rayleigh-B�enard convection was laid during the 1960'sby the weakly
nonlinear analysisof Schl•uter, Lortz, and Busse(SLB) [12] for rigid boundaries,
which predicted stable straight rolls above onset also for this realistic case.This
prediction is in agreement with experiment, as illustrated by the middle pattern
of Fig. 1 as well as by numerous other experiments. SLB also establishedthat
the bifurcation to RBC is supercritical, and gave the initial slope S1 of the
Nusselt number N � Qd=��T = 1 + S1� + O(� 2) (� is the conductivit y of the
quiescent uid and Q is the heat current density). This wasconsistent with early
measurements, for instance with those of Silveston [13]. Modern measurements
like those shown in Fig. 2, [14] even within their much greater resolution, are
alsoconsistent with a supercritical bifurcation. However, the experimental value
of S1 varies somewhat from one experiment to another and is always somewhat
lower than the theoretical prediction (for the data in Fig. 2 S1 = 1:28 whereas
the prediction is S1 = 1:43). Possibly this problem is due to boundary e�ects at
the sidewall, but this issue is not entirely settled. Conceptually the next great
step forward wasthe realization by Swift and Hohenberg [15] that the bifurcation
to RBC, shown by SLB to be supercritical in the deterministic system,becomes
subcritical in the presenceof thermal noise.Although at the time the �rst-order
nature of the transition was believed to becomesigni�can t only within a part
per million or soof the transition, thus being out of reach of the experimentalist,
good evidencefor it has beenobtained in very recent experiments [16].

Equally important were seminal experimental contributions during the �rst
�v e or six decadesfollowing B�enard's work. Here I mention only a couple. The
heat transport measurements of Schmidt and Milv erton [17] con�rmed the pre-
diction Rc = 1708with an accuracy of better than 10 %. The extensive experi-
ments of Silveston[13] already mentioned above provided data for N from below
onset to R ' 5 � 106. Silveston also visualized the convection patterns in his
apparatus, using the shadowgraph method which has becomesovery important
in more recent times [18, 19, 20]. For additional historical notes, the reader may
wish to consult the article by P. Mannevill in this volume, and the informativ e
book by Chandrasekhar[1].

During the last three decadesRayleigh-B�enard convection (RBC) has be-
come a paradigm for the study of pattern formation [21]. It reveals numerous
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interesting phenomenain various rangesof � � �T =�T c � 1. Many of thesephe-
nomenahavebeenstudied in detail recently , using primarily compressedgasesas
the uid, sensitive shadowgraph o w-visualization, digital image analysis, and
quantitativ e heat-ux measurements [19, 22]. I briey mention some of them
here,and then discussa few of thesein greater detail in separatesectionsbelow.

Even below onset, thermally driven uctuations of the temperature and ve-
locity �elds about their pure conduction averagesprovide a fascinating example
of critical phenomenain a non-equilibrium system. Already 27 yearsago it was
predicted by Swift and Hohenberg [15] that these uctuations should alter the
nature of the bifurcation to RBC, making it subcritical and thus analogousto
a �rst-order phasetransition in equilibrium systems.Very recent measurements
[16] suggestthat this is indeed the case.

Above but close to onset the pattern for a Boussinesqsystem consists of
straight rolls (see Fig. 1 middle), possibly with some defects induced by the
sidewalls [23]. When non-Boussinesqconditions prevail, a pattern of perfect,
defect-freehexagonsevolves(seeFig. 1 left).

Further above onset, for � > 0:5 or so, an interesting qualitativ ely di�eren t
state of spatio-temporal chaos, known as spiral-defect chaos (SDC), occurs in
systems with Prandtl numbers � � � =� of order one or less. [24] This state
is a bulk property and not sidewall induced; it has been studied intensely by
theorists as well as experimentalists.

Similarly, RBC was usedto study the onset of time dependenceover a wide
range of � . [25, 26] Temporally periodic or chaotic patterns were found for � >
O(1), with the onset occurring at smaller � for smaller � . However, quantitativ e
studies like those carried out for SDC are still lacking at larger � .

The system becomesmore complex and interesting even near onset when it
is rotated about a vertical axis with an angular velocity 
 . For that caseit was
predicted [27, 28, 29] and found experimentally [30, 31, 32] that, for 
 > 
 c, the
primary bifurcation from the conduction state remainssupercritical and leadsto
parallel rolls which are unstable. The instabilit y is to plane-wave perturbations
with a wave-director angle which is advancedrelative to that of the rolls by an
angular increment � K L in the direction of 
 . This phenomenonis known as the
K •uppers-Lortz (KL) instabilit y. The pattern consistsof domains of rolls which
incessantly replaceeach other, both by irregular domain-wall motion and by the
KL mechanism. The spatial and temporal behavior suggeststhe term \domain
chaos" for this state. Sincethis exampleof spatio-temporal chaosoccursdirectly
at onset,it shouldbemoreaccessibleto theoretical elucidation than, for example,
the spiral-defect chaosmentioned above.

Theoretically, the KL instabilit y is expectedto persist near onsetup to large
values of 
 . Thus it was a surprise that the patterns found in experiments
near onset changed dramatically when 
 was increased.[33] For 
 � 70, there
was no evidenceof the characteristic domain chaos until � was increasedwell
above 0.1. At smaller � , four-fold coordinated cellular patterns, and in some
parameter rangesslowly-rotating, aesthetically appealing, square lattices, were
encountered.
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Relatively unexploredare experimental opportunities which RBC hasto o�er
in the range of � well below unit y. Pure uids (with rare exceptions [34]) have
� � 0:7. Recently it wasshown [35, 36] that smaller valuesof � canbe reachedby
mixing two gases,onewith a largeand the other with a small atomic or molecular
weight. The most extreme examplereadily available is a mixture of H2 and Xe.
Prandtl numbers as small as 0.16 can be reached. In the range � � 0:6, several
interesting new phenomenaare predicted to occur. [29, 37, 38] In the � � 

plane they include subcritical bifurcations below a line of tricritical bifurcations,
Hopf bifurcations to standing waves,a line of codimension-two points where the
Hopf bifurcation meetsthe stationary bifurcation, and a codimension-threepoint
where the codimension-two line and the tricritical line meet.

Another rich and interesting modi�cation of the Rayleigh-B�enard system is
achieved by inclining the layer relative to gravit y. [39, 40, 22] This adds the tilt
angle  as an additional parameter. In this casethe basic state consistsof heat
conduction and a parallel shear o w which breaks the rotational invariance of
the usual RBC. Depending on  and � , longitudinal, oblique, transverse,and
travelling transverserolls are the possibleo w structures at onset.

No doubt I neglectedto mention additional important topics associated with
RBC. Nonetheless,at this point we will proceedto a somewhat more detailed
review of a few of the phenomanalisted above which I have found particularly
interesting.

2 Fluctuations near the Onset of Convection

In the usualdeterministic description of RBC, basedon the Boussinesqor Navier-
Stokes equations, all velocities vanish below the onset of convection and the
temperature is given by the pure conduction pro�le. However, the Brownian
motion of the atoms or moleculeswhich occurs becausethe systemis at a �nite
temperature leads to uctuations of the temperature and velocity �elds which
have zero mean but �nite mean square. When the uctuation amplitudes are
small enough, their interactions with each other can be neglectedand the am-
plitudes can be described well by stochastic linearized hydrodynamic equations.
[41] To my knowledge, the �rst spatially extended non-equilibrium system for
which quantitativ e measurements of these uctuations were made was electro-
convection in a nematic liquid crystal [42]. Soon thereafter, thermally driven
uctuations were observed also for RBC, [43] and quantitativ e measurements
of their amplitudes were made. [44, 45] In part thesemeasurements were made
possibleby the development of experimental techniques for the study of RBC
in compressedgases.[23, 19] There it is possibleto usesamplespacingsan order
of magnitude smaller than for conventional liquids and kinematic viscositiesare
relatively small, thus making the systemsmore susceptibleto noise.In addition,
maximizing the sensitivity of the shadowgraph method and careful digital image
analysis have enhancedthe experimental resolution.[19]

In the left part of Fig. 3 we show a processedimage of a layer of CO2 of
thickness0.47mm at a pressureof 29 bars and at a meantemperature of 32.0� C.
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Fig. 3. Left: Shadowgraph snapshot of uctuations below the onset of convection
(� = � 3 � 10� 4). Right: The average of the square of the modulus of the Fourier
transform of 64 images lik e that on the left. After [44].

Fig. 4. Mean square amplitudes of the temperature uctuations below the onset of
convection of a layer of CO2 of thickness 0.47 mm and a mean temperature of 32� C.
The solid (open) circles are for a sample pressureof 42.3 (29.0) bars. The two lines are
the theoretical predictions. Note that there are no adjustable parameters. After [44].
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The samplewas at � = � 3 � 10� 4, very closeto but just below the bifurcation
point. The uctuating pattern is barely detectable by eye. The right half of
the �gure shows the average of the structure factors (squares of the moduli
of the Fourier transforms) of 64 such images. It demonstratesclearly that the
uctuations have a characteristic wavenumber q. The value of q is in quantativ e
agreement with the critical wavenumber qc = 3:117for RBC. The ring in Fourier
spaceis azimuthally uniform, reecting the continuous rotational symmetry of
the RBC system.

The power contained within the ring in Fourier spacecan be converted quan-
titativ ely to the mean-squareamplitude of the temperature �eld.[44 , 19, 22] Re-
sults for the temporal and spatial averagesh� T 2i of the squareof the deviations
of the temperature from the local time average(pure conduction) asa function of
� at two di�eren t samplepressuresare shown in Fig. 4 using logarithmic scales.
The data can be described quite accurately by straight lines with slopescloseto
-1/2, consistent with the powerlaw h� T 2i / � � 1=2 aspredicted by linerar theory.

The amplitudes of the uctuating modes below but close to the onset of
RBC werecalculatedquantitativ ely from the linearizedstochastic hydrodynamic
equations[41] by van Beijeren and Cohen[46], using realistic (no-slip) boundary
conditions at the top and bottom of the cell. For the mean squaretemperature
uctuations their results give[47, 44]

h� T 2(� )i = ~c2
�

�T c

Rc

� 2 F
4
p

� �
; (2)

with ~c = 3qc
p

Rc = 385:28. Here Rc = 1708is the critical Rayleigh number, and
the noise intensity F is given by

F =
kB T
�d� 2 �

2� qc

� o� oRc
; (3)

with � o = 0:385and � o ' 0:0796.One seesthat F dependson the density � and
kinematic viscosity � , as well as on the Prandtl number � = � =DT (DT is the
thermal di�usivit y). Using the uid properties of the experimental samples,[19]
oneobtains the straight lines in Fig. 4. Sincethere are no adjustable parameters,
the agreement betweentheory and experiment can be regardedasexcellent. This
agreement lends strong support to the validit y of Landau's stochastic hydrody-
namic equations[41].

Su�cien tly close to the bifurcation, where uctuation amplitudes become
large, nonlinear interactions between them play a role and linear theory breaks
down. In this regime genuine critical phenomenawhich di�er from the linear
predictions are expected,and the precisecritical behavior should depend on the
symmetry properties and the dimensionality of the system.Deviations from the
prediction of linear theory have beenobserved recently for electroconvection in
nematic liquid crystals [48, 49] which is exceptionally susceptibleto the inuence
of thermal noise.Unfortunately to this day there are no predictions of the crit-
ical phenomenato be expected for this interesting group of systems.For RBC,
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Swift and Hohenberg wereable to show that the systembelongsto the sameuni-
versality classas one consideredby Brazovskii.[15, 47, 50] Equilibrium systems
belongingto this classinclude the crystallization of di-block co-polymers.[51] For
this universality class the transition is of secondorder at the mean-�eld level,
but the uctuations induce a �rst-order tarnsition. A common feature of all the
systemsbelonging to this classis that the order parameter near the bifurcation
has a relatively large volume of phasespaceaccessibleto it. In the RBC case
this is reected in the rotational invarianceof the systemasdemonstratedby the
ring in Fourier spaceshown in Fig. 3. On the basisof this qualitativ e considera-
tion onewould not expect the electroconvection systemmentioned above[48, 49]
to belong to the Brazovskii universality classbecausethe anisotropy due to the
director leadsto only one or two pairs of spots in Fourier space.
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Fig. 5. The temperature-density plane near the critical point of SF6 . The dashed line
is the coexistence curve separating liquid and vapor. The vertical dotted line is the
critical isochore. The solid circle is the critical point Tc = 45:567� C, Pc = 37:545 bars
and � c = 0:742 g/cm 3 . The solid lines represent the isobars P = 38:10 bars (lower line)
and 39.58bars (upp er line) usedextensively in experiments. The heavy solid lines, each
ending in two circles, illustrate the density range spanned during measurements with
�T ' �T c for a cell of spacing d = 34:3� m (lower line) and d = 59:1� m (upp er line).

For RBC in ordinary liquids one can estimate[15] that nonlinear uctuation
e�ects should be observable typically only for j� j � 10� 6, which has not been
accessibleto experiments sofar. For RBC in compressedgasesthe critical region
is a bit wider, reaching as far out as j� j ' 10� 5; but as can be seenfrom Fig. 4,
this too hasbeenbeyond experimental resolution. However, the situation is much
more favorable near a liquid-gas critical point (CP). [16] Part of the reasonfor
this can be seen by inspecting Eq. 3. and the phase diagram of SF6 shown
in Fig. 5. In that �gure we see the temperature-density plane near the CP.
The vertical dotted line corresponds to the critical isochore, and the two solid
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lines are isobars. As the CP is approached on the critical isochore from higher
temperatures, the viscosity � has only a mild singularity and remains �nite,
whereasthe Prandtl number � = � =DT divergesbecausethe thermal di�usivit y
DT vanishes.Thus the divergenceof � at �nite � leadsto a divergenceof F .[52]
An equally important aspect is, however, that the uid properties are such that
typical sample spacingsd which can be used are in the range of 10 to 100 � m,
thus increasing F by one or two orders of magnitude compared to liquids and
compressedgasesaway from the critical point. Another factor which greatly
increasesthe experimental shadowgraph resolution near the CP is the value of
the temperature derivative of the refractive index dn=dT. Typically we have
jdn=dTj ' 0:1, whereasfor ordinary uids it tends to be two or three orders of
magnitude smaller.

Fig. 6. Shadowgraph images (top row) of a 1:28 � 1:28 mm2 part of a sample with
d = 34:3 � m, and the moduli of their Fourier transforms (bottom row). From left to
right, the imagesare for � = 0.008, -0.001, and -0.047. The mean temperature and the
pressurecorresponded to the critical isochore at T = 46:22� C. Adapted from Ref. [16]

In Fig. 6 we show shadowgraph snapshotsof uctuations and roll patterns
for a cell of spacingd = 34.3 � m at a pressureP = 38:10 bars corresponding to
the lower isobar shown in Fig. 5. [16] The mean temperature �T = 46:22� C was
kept constant during the experiment and had a value which correspondedto the
critical isochore. When the applied temperature di�erence was equal to �T c =
0:131� C, the sample occupied the heavy section of the line representing the
isobar. The theoretical value of F was5� 10� 4 for this case.The imagesare for
several � values.The bottom row shows the moduli of their Fourier transforms.
Just above onset the pattern consistedof convection rolls, as predicted for the



10 G. Ahlers

Fig. 7. Shadowgraph power P as a function of � � �T =�T c � 1 for the experiment
of Fig. 6 on a) linear and b) logarithmic scales.Solid lines: �t of the Swift-Hohenberg
prediction [47] to the data. From Ref. [16]

Fig. 8. Patterns from a sample with d = 59 � m at � = 0:009. (a): image of size
1.92� 1.92 mm2 and b) the modulus of its Fourier transform. (c): the 0.96� 0.96 mm2

area inside the square in (a). (d): same area as (c), but after a bandpass �lter was
applied around the Fourier-transform peaks of (b). (e): amplitude of the rolls of (a)
obtained by Fourier-transform demodulation. (f ): director angle of (a). Adapted from
Ref. [16]
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deterministic system.[12] Consistent with the Swift-Hohenberg prediction of a
�rst-order transition, there was a sharp transition from a pattern of rolls to one
of disordereductuating cellular structures as �T was decreasedbelow �T c.

Figure 7 givesresults for the shadowgraph power (the squareof the modulus
of the Fourier transform) as a function of � . One seesa dramatic changein the
power at � = 0. The solid lines are a �t of the prediction of Swift and Hohenberg
to the data. This �t yielded F = 7� 10� 4, in good agreement with the prediction
basedon the uid properties.

Aside from the order of the transition, an issue of considerable interest is
the nature of the ordered state (i.e. the rolls) above onset. In Fig. 8 we show an
example.[16] One seesthat the rolls reveal several typesof disorder. Particularly
in the enlargedimageFig. 8c it can be seenthat the rolls weremodulated along
their axis. This was the result of the superposition of uctuations of random
orientation. As seenin Fig. 8d, it could be removedby band-passFourier �ltering
with the �lters centered on the two peaks of the transform shown in Fig. 8b.
A second type of disorder took the form of an amplitude modulation which
varied irregularly in time and space.A snapshotof the roll amplitude, obtained
by Fourier demodulation, is shown in Fig. 8e. A third type of disorder took
the form of roll undulations; i.e. a variation of the angle of the roll director
along the roll axis. A grey-scalerendering of the director angle, obtained from
a local wavedirector analysis [55], is shown in Fig. 8f. We see that both the
roll amplitude and the director-angle modulation are correlated over relatively
long distancesin the direction of the wave director, and vary much more rapidly
along the roll axis. Someof this noise-induceddisorder had beenanticipated by
Toner and Nelson,[56] and should have a commonality with disorder near phase
transitions in other two-dimensionalsystems.

Fig. 9. Shadowgraph imagesof a 1:92� 1:92 mm2 part of a samplewith d = 59 � m and
a pressureof 39.58 bars. Left: � = � 0:0015. Right: � = 0.0025. The mean temperature
was 48.3� C.
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Interestingly, rolls are encountered above the bifurcation only when the mean
sampletemperature is such that the density corresponds to the critical density.
Figure 9 shows the uctuations just below (left image) and the ordered pattern
just above (right image) the bifurcation for an experiment in which the mean
temperature was 48.3� C. [6] At the pressureof the experiment (39.58 bars) the
critical density would have beenachieved at 48.0� C. One seesthat a dislocation-
free lattice of hexagonsforms. Although the hexagonsare reminiscent of Henri
B�enard's beautiful patterns, they have their origin in non-Boussinesqe�ects
[57, 58] whereasB�enard's hexagonswere causedby a temperature dependent
surface tension. Measurements of the hysteresisassociated with the formation
and disappearanceof the hexagonsin Fig. 9, as well as a transition to rolls at
larger � , were in quite good agreement with predictions basedon the determin-
istic equations of motion [57] even though uctuations were present. [59]

3 Deterministic patterns

When the e�ectiv e noiseintensity is relatively small, the systemabove onsetcan
be understood in terms of the deterministic equationsof motion. The formation
of deterministic patterns takes many forms and depends on such parameters
as the Prandtl number, the aspect ratio, and the shape of the sidewalls. Any
attempt at a thorough review is well beyond the scope of this article. As an
exampleof the richnessof pattern-formation phenomenawhich are encountered
I show in Fig. 10 some shadowgraph images for � = 1:0 and � = 28:7 in a
cylindrical cell. [60] For this caseF = 1 � 10� 7, and stochastic e�ects do not
play an important role. The patterns wereobtained with compressedCO2 as the
uid, but the values of � and � are fairly closeto those studied by Croquette
and coworkers [23] using Argon under pressureand to those of Hu et al. [61]
using CO2. Someof Croquette's results are shown in the chaper by Manneville
in this volume. Croquette found that a time independent pattern existed only
close to onset, roughly for � < 0:12. As � increased, the rolls developed an
increasingtendency to terminate with their axesorthogonal to the sidewall. The
consequent roll curvature and the associated mean o w causeda compressionof
the rolls near the cell center. For � closeto 0.12 the wavenumber in the interior
crossedthe skewed-varicoseinstabilit y-boundary [62] and a temporal succession
of dislocation pairs wasformed, thus rendering the pattern time dependent. Most
likely this processprovides the explanation of the time dependenceobserved
close to onset by heat-transport measurements in early cryogenic convection
experiments. [63, 64]

As � increased,the patterns becamemore complexasillustrated in Fig. 10 for
� = 0:45. Typically three wall foci existedat this point. Becauseof the associated
roll curvature there were mean-ow �elds emanating from the foci. These o ws
were strong enoughto causea continuous emissionof traveling convection rolls
from the foci, leading to a complicated dynamics in the cell interior.[61] These
patterns were,however, sidewall inducedand not intrinsic to the interior of a very
large system. This was shown in an experiment where the walls were replaced
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Fig. 10. Shadowgraph images for CO2 at a pressureof 33.25 bars and mean temper-
ature of 21.16� C in a cell with d = 1:5 mm and aspect ratio � = 28:7. The Prandtl
number was 1.0 and �T c was found to be 0.317� C. The number near each image gives
the value of � = �T =�T c � 1 . After Ref. [60]

by a very gentle radial ramp in the cell spacing which led to a region of pure
conduction surrounding the convecting interior. [7] An example of a pattern in
this system,for � = 0:21, is shown in the middle of Fig. 1. In that caseonefound
time independent near-perfect rolls without defectsand with relatively little roll
curvature.

Somewherenear � = 0:8 a new phenomenonoccurred. Small spirals formed
in the interior, as illustrated in Fig. 10 for � = 0:74 and 1.21. The formation of
these spirals was an intrinsic property of the bulk convection system and was
not induced by the sidewalls. This state, known as spiral-defect chaos,has been
known to exist only for the last decadeor so [24] and is discussedin more detail
in Sect. 4.2 below.

As � increasedfurther, the structures becamemore disordered and the spi-
rals were a less dominant feature as seen at � = 2:47. The next interesting
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phenomenonwas �rst noticeable for � = 4:68, and becamemore pronounced
as � increasedto the larger values. This was a transverseperturbation of the
convection rolls by a moduation which had a relatively short wavelength. This
new feature wasdue to the oscillatory instabilit y predicted by Clever and Busse.
[65] Thesetransversemodulations of the rolls were traveling waveswhich moved
along the roll axes.

The evolution with increasing� seenfor the last three patterns is remarkable.
Although the patterns becamemore complex in the sensethat the oscillatory
modulation becamemore pronounced,on a coarse-grainedscalewhich averages
over the traveling wavesthey becamesimpler again.Thus, the pattern at � = 11:6
was not unlike the one for � = 0:45; both had three wall foci and similar defect
structures in the interior. It would benice to beable to understand this reduction
of complexity with increasingstress.

4 Spatio-temp oral chaos

4.1 Early Measuremen ts

The early 1970'sbrought a broad survey over a wide rangeof Prandtl numbersof
the occurrenceof time dependent patterns in RBC [25, 26]. At about that time
quantitativ e studies of the statictical properties of spatio-temporal chaos(STC)
for � nearonewerecarried out on RBC at cryogenictemperatures.[66, 67, 68, 69]
This early work was followed soon by quantitativ e measurements [70, 71] on
temporal chaos in systems without signi�can t spatial extent which, for some
time, attracted far more attention becausethey made contact with concurrent
theoretical developments [72]; this interaction between theory and experiment
revived the �eld of dynamical systemsas a branch of physics. [73] By now this
�eld has reached a certain level of maturit y. Here I want to examinesomeof the
experimental results on chaos in systemswith signi�can t spatial variation. For
thesethe level of theoretical understanding is still much more limited than it is
for dynamical systems.[74]

Results for the time-averagedNusseltnumber hNi during the early cryogenic
experiments (for which there was no o w visualization) are shown in Fig. 11a
as a function of � � �T =�T c � 1. A surprise at the time of those measurements
was that the convection dependednon-periodically on the time t already at the
relatively small values � ' 1. This is illustrated in Fig. 11b for a circular cell
with an aspect ratio � (radius/height) = 5:3 and � = 1:23. The power spectrum
of N (t) was broad, with a maximum at the frequency f = 0, and for large f
it fell o� as f � 4 as shown in Fig. 11c. The experimentally observed algebraic
fallo� was surprising becausesimple models of chaos in deterministic systems
with relatively few degreesof freedom, such as the Lorenz model, have a spec-
trum with an exponential fallo�. [75, 76] It seemslikely [67] that the onset of
time dependencewas associated with an adjustment of the wavenumber k as
a function of � which causedthe system to crossan instabilit y boundary, from
our present vantage point most likely the skewed-varicose(SV) instabilit y. [62]
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f  [ Hz ]

Fig. 11. Results from RBC at cryogenic temperatures. (a): the time-averagedNusselt
number as a function of � . (b): typical deviations of the Nusselt number from its mean
for � = 1:23 as a function of time. (c): the power spectrum of a longer sequenceof data
lik e those in (b) for � = 1:23. After Ref. [68].

The apparently algebraic fallo� of the spectrum presumably is then attributable
to the presenceof a large number of chaotic interacting modes in the spatially
extended system which turns out to lead to e�ectiv ely algebraic decay [75, 76]
over the experimentally accessiblerange of f ; but so far as I know a quantita-
tiv e explanation of this phenomenonis still lacking. In a qualitativ e sensethis
suggestionthat many modes come into play as the spatial extent increasesis
an early indicator that spatio-temporal chaos is high-dimensional, and perhaps
extensivein the sensethat the number of modes (or basis functions) neededto
describe it is proportional to (or at least increaseswith) the system size. [77]

In order to provide a quantitativ e characterization of the chaotic state, the
squareroot of the variance� N of N (t) aswell asthe �rst moment f 1 of its power
spectrum were determined as a funtion of R. As R increased,it turned out that
the chaotic state was entered with a discontinuous jump of � N from zero, and
that f 1 was �nite at onset. With increasingR, f 1 followed a powerlaw over the
two decades1 < � < 200, with an exponent closeto 2/3. To this day I am not
aware of a theoretical explanation of theseinteresting quantitativ e experimental
results. It is alsonoteworthy that theseexperiments [66, 67] represent oneof the
very early examplesof computer control of experiments with automated data
acquisition. [78] Without this automation it would not have been possible to
obtain the results. Similarly, the use for the analysis of experimental results of



16 G. Ahlers

fast Fourier-transform techniques, which were still relatively new, was a novel
feature of this work.

Also still unexplained is the fact that the system remains in the chaotic SV-
unstable regime, instead of reducing its wavenumber so as to enter once more
a regime of stable rolls which is known to exist for smaller k [62]. This latter
phenomenonoccurs in the one-dimensionalcaseof a narrow rectangular cell
where the SV instabilit y leads to the expulsion of a roll pair and a consequent
reduction of the wavenumber. Presumably the persistent chaos is the result of
an asyet unknown wavenumber-selectionprocessin the two-dimensionalsystem
with circular sidewalls which forcesthe pattern to remain in the unstable regime.
Another feature of the data which was surprising at the time is that the chaos
in this system was not precededby periodic and/or quasi-periodic states which
were consideredtypical of low-dimensional chaotic systems.[70] The absenceof
thesestates is consistent, however, with the crossingof an instabilit y boundary
which suddenly movesthe system into a regime of high-dimensional chaos.

4.2 Spiral-defect chaos

In spite of its provocative early results and numerous experimental advantages
[68, 69], the cryogenicwork on STC had its limitations becauseit did not per-
mit o w visualization. Modern experiments on RBC near ambient temperatures
have used the shadowgraph method [18, 19] to visualize the temperature �eld
associated with the convection. Recent experiments on RBC in compressedgases
with Prandtl numbers � closeto oneled to the discovery [24] that a chaotic state
called \spiral-defect chaos" (SDC) is entered at modest � when � is large. An
example of a shadowgraph image of SDC is shown in Fig. 12a. SDC consistsof
many small spirals, targets, and other defectsin the roll structure. The defects
have a modest lifetime and drift about irregularly, and new onesare constantly
created as old onesdisappear. The spirals co-exist with regions of more or less
straight rolls. For the � value of Fig. 12a these regions have a width of only
a few wavelengths; but near the onset of SDC, and particularly for very-large
aspect-ratio cells [79], the straight-roll regionscan becomequite large. By now
the SDC state hasbeenstudied in other experiments which are too numerousto
list at this point. A recent review of much of this work and numerousreferences
may be found in Ref. [22]. SDC also has been found in numerical solutions of
model equations [80, 81] and of the Boussinesqequations [82]. Here I mention
only oneinteresting aspect of this state. Figure 12b shows the azimuthal average
of the structure factor S(k) (square of the modulus of the Fourier transform)
of SDC images.S(k) can be usedto compute the mean wavenumber �k. Results
for �k are shown as a function of � in Fig. 12c. One can seethat all the results
for �k lie well within the range where straight rolls are also known to be stable
[65, 62]. Thus we arrive at the interesting conclusion that SDC is not caused
by a bulk instabilit y of the straight-roll patterns as apparently was the casein
the smaller-aspect-ratio cryogenic experiments. Instead there is bi-stabilit y of
SDC and the usual roll state, that is over a wide parameter range straight rolls
(a �xed point) as well as SDC (a chaotic attractor) are stable solutions of the
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equations of motion of the system. For Prandtl numbers close to or less than
one it turns out that the initial and boundary conditions of typical experiments
fall within the attractor basin of SDC, and that rolls without spirals are rarely
observed for � greater than someonset value � s. [83]

A quantitativ e understanding of SDC has not been achieved so far. The
problem is very di�cult becausethe chaotic state evolves from a ground state
which is already extremely complex (see,e.g., the upper left image of Fig. 10).
However, someinsight into the dynamics of this state has beengained. Is seems
likely that mean-ow �elds play a signi�can t role. [84, 22, 85] A central feature
of the dynamics seemsto be the competition betweentwo wavenumber selection
processes.[81] The spiral tip selectsone wavenumber, and the far �eld which is
dominated by a number of di�eren t defect types selectsanother. The resulting
wavenumber gradient orthogonal to the spiral arms leads to outward traveling
wavessurrounding the spiral tips which are equivalent to spiral rotation.
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Fig. 12. Spiral-defect chaos. (a): shadowgraph image for � = 78, � = 0:96, and
� = 0:72. (b): structure factor S(k) of images lik e that in (a), but for � = 0:46 (vertical
dotted lines are stabilit y boundaries of straight rolls). (c): �k as a function of � (solid
lines are the Eckhaus and skewed-varicose instabilit y of straight rolls; horizontal bars
are the widths of S(k)). After Ref. [24].

5 E�ect of Rotation

5.1 Domain Chaos

As mentioned in the Intro duction, RBC becomeseven more complex and inter-
esting when the sampleis rotated about a vertical axis. In that casethe Coriolis
force must be added to the equation of motion (the centrifugal force usually is
neglectedsince to lowest order it is balanced by a pressuregradient sustained
by the sidewall). The result is that, for 
 > 
 c, the rolls that form above on-
set are unstable to plane-wave perturbations with a wave director which has a
characteristic angle � K L relative to the roll wave director. For � � 0:33, the bi-
furcation is expected to be supercritical both below and above 
 c. Thus the KL
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instabilit y o�ers a rare opportunit y to study STC in a system where the aver-
age o w amplitude evolvescontinuously from zero and where weakly-nonlinear
theories are expected to be applicable. After receiving only limited attention
for several decades[27, 28, 29, 30, 86, 87, 88], the opportunit y to study STC
has led to a recent increase in activit y both theoretically and experimentally
[19, 31, 32, 89, 90, 91, 92, 93, 94, 95]. Indeed, as predicted theoretically,[27] the
straight rolls at the onset of convection for 
 > 
 c are found to be unstable.
In the spatially extended system this leads to the co-existanceof domains of
rolls of more or lessuniform orientation with other domains of a di�eren t ori-
entation. [30, 86] A typical example is shown in Fig. 13b. The replacement of
a given domain of rolls proceededprimarily via domain-wall propagation. More
recently the KL instabilit y wasinvestigatedwith shadowgraph o w-visualization
very close to onset. It was demonstrated that the bifurcation is indeed super-
critical, and that the instabilit y leadsto a continuousdomain switching through
a mechanism of domain-wall propagation also at small � .[96, 31, 97, 32] This
qualitativ e feature has been reproduced by Tu and Cross[91] in numerical so-
lutions of appropriate coupled Ginzburg-Landau (GL) equations, as well as by
Neufeld et al.[93] and Crosset al.[94] through numerical integration of a gener-
alized Swift-Hohenberg (SH) equation. There is, however, also a contribution to
the dynamics from nucleation of dislocation pairs via the KL mechanism.[98]

 
(a) (c) (b) 

Fig. 13. Convection patterns for small � . (a) is for 
 = 0 and Ar gas with � = 0:69
and � = 0:07 (from Ref. [35]). It shows the predicted [12] straight-roll pattern. (b) is
for 
 = 15:4 and CO2 at a pressure of 32 bar with � = 1:0 and � = 0:05 (from Ref.
[31]). It is a typical pattern in the K •uppers-Lortz-unstable range. (c) is for Argon at
40 bar with � = 0:7, 
 = 145, and � = 0:04 (from Ref. [33]); it shows no evidence of
the K •uppers-Lortz instabilit y, and instead consists of a slowly-rotating square lattice.

Central featuresof the KL STC are the time and length scalesof the chaotic
state near onset. The GL model assumesimplicitly a characteristic time de-
pendencewhich varies as � � 1 and a correlation length which varies as � � 1=2.
Measurements of a correlation length given by the inversewidth of the squareof
the modulus of the Fourier transform as well as a domain-switching frequency
as revealed in Fourier spaceyielded the data in Fig. 14.[31, 97] These results
seemto be inconsistent with GL equations since they show that the time in
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Fig. 14. The characteristic frequencies! a (left) and lengths � (righ t) of the KL state.
The data were divided by 
 -dependent constants ! r and � r soas to collapsethem onto
single curves.The dashedlines are shown for referenceand have the slopes1 for ! a and
-1/2 for � which correspond to the theoretically expected exponents of the time and
length scalesnear onset. The data sets cover approximately the range 14 � 
 � 20.
SeeRefs. [31], [97], and [32] for details.

the experiment scalesapproximately as � � 1=2 and that the two-point correlation
length scalesapproximately as � � 1=4. These results also di�er from numerical
results basedon a generalizedSH equation[94] although the rangeof � in the nu-
merical work is rather limited. We regard the disagreement betweenexperiment
and theory as a major problem in our understanding of STC.

5.2 Square Patterns at Mo dest �

Motiv ated by the unexpected scaling of length and time with � for the KL state
at 
 � 20, new investigationswereundertaken recently in which the rangeof 

was signi�can tly extended to larger values. Contrary to theoretical predictions
[29, 37, 99] based on Galerkin proceduresand on the stabilit y of appropriate
coupledGL equations,it wasfound[33] that for 
 � 70 the nature of the pattern
nearonsetchangedqualitativ ely although the bifurcation remainedsupercritical.
Squarepatterns like the oneshown in Fig. 13cwerestable, instead of typical KL
patterns like the one in Fig. 13b. The squaresoccurred both when Argon with
� = 0:69 wasusedand when the uid waswater with � ' 5. They wereobserved
as well in He-Xe gas mixtures with � ' 0:5. [100] For someparameter ranges
the lattice wasquite disordered;but the four-fold nearest-neighbor coordination
remained. The occurrence of squaresin this system is completely unexpected
and not predicted by theory; the KL instabilit y should continue to be found near
onset also at these higher valuesof 
 . Thus the experiments have uncovered a
qualitativ edisagreement with theoretical predictions in a parameter rangewhere
one might have expected the theory to be reliable. Interestingly, very recent
direct numerical simulations basedon the Boussinesqequationshave reproduced
the squarepatterns near onset.[22]
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A further interesting aspect of the squarepatterns is that the lattice rotates
slowly relative to the rotating frame of the apparatus. This was found in the
experiments with Argon and water [33] as well as in the simulation [22]. Mea-
surements of the angular rotation rate ! of the lattice for the water experiment
are consistent with ! (� ) vanishing as � goes to zero. Thus the experimental re-
sults do ot necessarilyimply that the bifurcation to squaresis a Hopf bifurcation.
Quite possibly, as the aspect ratio of the cell diverges,the slope of ! (� ) vanishes
since an in�nitely extended lattice can not rotate. Alternativ ely, of course, the
lattice might becomeunstable as � becomeslarge. It would be interesting to
study the � dependenceof ! experimentally . To my knowledge there is as yet
no theoretical explanation of this rotation.

5.3 The Range 0:16 < � < 0:7

When a RBC systemis rotated about a vertical axis, the critical Rayleigh number
Rc(
 ) increases.Rc(
 ) is predicted to be independent of � , and experiment [97]
and theory [1] for it are in excellent agreement asshown in �g. 15a.For � > 0:33
the bifurcation is expected to be supercritical and to lead to KL chaosunless

is quite large. As discussedabove in Sect. 5.2, recent experiments have shown
that this is not the case; for 
 � 70 square patterns were found which are
unrelated to the typical KL domains. For large 
 and � < 0:68, the stationary
bifurcation is predicted [37] to be precededby a supercritical Hopf bifurcation;
but for � > 0:33 experiments have not yet reached valuesof 
 su�cien tly high
to encounter time-periodic patterns.

The experimentally accessiblerange 0:16 � � � 0:33 is truly remarkable be-
causeof the richnessof the bifurcation phenomenawhich occur there when the
system is rotated. For instance, for � = 0:26 there is a range from 
 ' 16 to
190 over which the bifurcation is predicted to be subcritical. This is shown by
the dashedsection of the curve in Fig. 15c. The subcritical rangedependson � .
In Fig. 15b it covers the area below the dashedcurve. Thus, the dashedcurve
is a line of tricritical bifurcations. It has a maximum in the 
 � � plane, ter-
minating in a \tricritical endpoint". An analysis of the bifurcation phenomena
which occur near it in terms of Landau equations may turn out to be interest-
ing. One may expect path-renormalization[101] of the classicalexponents in the
vicinit y of the maximum. We are not aware of equivalent phenomenain equi-
librium phasetransitions, although presumably they exist in as yet unexplored
parameter ranges.

At relatively large 
 , the stationary bifurcation (regardlessof whether it is
super- or sub-critical) is predicted to be precededby a supercritical Hopf bifurca-
tion which is expectedto lead to standingwavesof convection rolls. [37] Standing
wavesare relatively rare; usually a Hopf bifurcation in a spatially-extended sys-
tem leadsto traveling waves.An example is shown by the dash-dotted line near
the right edgeof Fig. 3b. As can be seenthere, the Hopf bifurcation terminates
at small 
 at a codimension-two point on the stationary bifurcation which, de-
pending on � , can be super- or sub-critical. The line of codimension-two points
is shown in Fig. 15b as a dash-dotted line. One seesthat the tricritical line and
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Fig. 15. The bifurcation diagram for RBC with rotation about a vertical axis. (a.)
Experimental and theoretical results for Rc (
 ) obtained with water (open circles)
and Ar at three di�eren t pressures(triangles) on linear scales.After Ref. [33]. (b) The
theoretically predicted bifurcation diagram for RBC with rotation about a vertical axis.
The dashedcurve givesthe tricritical line. The dash-dotted line is the codimension-two
line where the Hopf bifurcation meets the stationary bifurcation (e.g. the solid circle
in (c)). For � = 0:24 the codimension-two line intersects the tricritical line, leading to
the codimension-three point shown as an open circle in (c). The upper dotted line in
(b) corresponds to the path represented in (c). The lower dotted line in (b) represents
the lowest � -value accessibleto experiment using gas mixtures. (c) Bifurcation lines
for � = 0:26. The dashed line shows the range over which the stationary bifurcation is
subcritical. The two plussesare the tricritical points. The dash-dotted line at large 

shows the Hopf bifurcation. From Ref. [38].

the codimension-two line meet at a codimension-threepoint, located at 
 ' 270
and � ' 0:24. We note that this is well within the parameter range accessible
to experiments. We are not aware of any experimentally-accessibleexamplesof
codimension-three points. This particular caseshould be accessibleto analysis
by weakly-nonlinear theories,and a theoretical description in terms of GL equa-
tions would be extremely interesting and could be comparedwith experimental
measurements.

The � -rangeof interest is readily accessibleto us by usingmixtures of a heavy
and a light gas.[36] Valuesof � vs. the mole fraction x of the heavy component
for a typical pressureof 22 bar and at 25 � C are shown in Fig. 4. An important
question in this relation is whether the mixtures will behave in the sameway as
pure uids with the same� . We believe that to a good approximation this is the
casebecausethe Lewis numbersare of order one.This meansthat heat di�usion
and massdi�usion occur on similar time scales.In that case,the concentration
gradient will simply contribute to the buoyancy force in synchrony with the
thermally-induced density gradient, and thus the critical Rayleigh number will
be reduced.Scaling bifurcation lines by Rc(	 ) (	 is the separation ratio of the
mixture) will mostly account for the mixture e�ect. To a limited extent we
showed already that this is the case.[35, 36] In more recent work we have begun
to show that the bifurcation line Rc(
 )=Rc(0) is independent of 	 . Nonetheless
we recognizethat a theoretical investigation of this issuewill be very important.
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Fig. 16. The Prandtl number � as a function of the mole fraction x of the heavy
component for three gasmixtures at a pressureof 22 bar and at 25 � C. From Ref. [36].

Assuming that the mixtures behave approximately like pure uids, we see
that the codimension-three point can be reached using either H2-Xe or He-Xe
mixtures. The tricritical point can be reached also using He-SF6.

6 Conclusion

In thesefew pagesit has beenpossibleto touch only on a few of the interesting
aspects of RBC. Some others are discussedin this volume in the chapter by
P. Manneville; but even collectively thesetwo contributions do not constitute a
thorough review of the �eld. Nonethelessit is clear that a century of research
since the original work of Henri B�enard on this conceptually simple system has
strongly advancedour understanding of spatially extendednonlinear dissipative
systems.However, much remains to be done.For example, the study of external
noise on the system is in its infancy. We believe that the bifurcation to RBC
becomessubcritical in the presenceof noise, but the inuence of noise on the
\ordered" state (i.e. the convection rolls) has beenexamined only qualitativ ely.
It also is apparent that there is a number of unsolved problems. Although we
have learned a lot from studies of SDC and domain chaos,the generalnature of
STC is not understood at a quantitativ e level. Important issuesare whether a
description in terms of generalprinciples, perhapsanalogousto those of equilib-
rium statistical mechanics, is on the horizon. [102] We also saw that there are
several speci�c issueson which theory and experiment conict. These include
the characteristic length and time scalesof domain chaos and the occurrence
at onset of squarepatterns in the presenceof rotation. It will be interesting for
future generationsof physicists to seewhat the next century will bring.
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