We report measurements of turbulent heat transport in cylindrical samples of ethane (C_2H_6) with diameter equal to height and heated from below while the applied temperature difference $\Delta T = T_b - T_t$ straddled the liquid-vapor coexistence curve $T_\phi(P)$. Starting in the vapor phase, the sample mean temperature $T_m = (T_t + T_b)/2$ was decreased in small steps and at constant pressure. As the top temperature T_t decreased below T_ϕ, droplet condensation occurred in a thin thermal boundary layer just below the top plate. This is shown by the shadowgraph images in Fig. 1. The left image is in the single-phase vapor region where $T_t > T_\phi$, and shows refractive-index variations associated with plumes and thermal fluctuations. For the middle and right images the sample is still nearly completely filled with vapor, but small circular black regions appeared which correspond to liquid droplets.

Fig. 1. Shadowgraph images at different mean temperatures with, from left to right, $\phi = 1.01, 0.92, \text{ and } 0.85$ where ϕ is the temperature fraction $0.5 + (T_m - T_\phi(P))/\Delta T$. For this experiment $P = 41.37$ bars and $\Delta T = 0.50K$.

In the single-phase regions where the temperature fraction $\phi = [0.5 + (T_m - T_\phi(P))/\Delta T]$ is greater than 1 (vapor) or less than 0 (liquid), the effective conductivity λ_{eff} at constant $\Delta T = 1K$ corresponded to a Nusselt number $Nu = \lambda_{eff}/\lambda$ (λ is the conductivity in the absence of convection) that was
typically near 200. When droplets formed, the latent heat of vaporization H provided an additional heat-transport mechanism. λ_{eff} increased linearly with decreasing T_m and T_t (see Fig. 2a), and reached a maximum value λ_{eff}^* at $\phi^* \simeq 0.45$ that was an order of magnitude larger than the single-phase λ_{eff}. The initial slope of the heat-transport enhancement was proportional to $1/\Delta T$, and λ_{eff}^* varied only mildly with ΔT. As shown in Fig. 2b, this implies that data for λ_{eff} taken with different ΔT fall onto a unique straight line when plotted as a function of ϕ. Except for the droplets, the sample remained filled with vapor in the range $\phi > \phi^*$ and the measurements were reproducible and independent of whether T_m was increased or decreased.

Interestingly, the onset of enhancement occurred at $\phi = \phi_{\text{on}} \simeq 0.95 < 1$, where a thin meta-stable vapor layer of finite thickness l_c already existed below the top plate. The fact that ϕ_{on} is independent of ΔT implies that l_c is also independent of ΔT even though the thermal gradient just below the top plate depends strongly on ΔT. For the example of Fig. 2 one can estimate that the thermal boundary-layer thickness is given by $l_{BL} \simeq L/(2Nu) \simeq 200 \mu m$ where $L \simeq 8$ cm is the sample height. For l_c one has $l_c \simeq (1-\phi_{\text{on}})l_{BL} \simeq 20 \mu m$.

As P approached the critical pressure, λ_{eff}^* increased dramatically even though H vanished. We attribute this phenomenon to an enhanced droplet-nucleation rate as the critical point is approached.

For $\phi < \phi^*$ the sample filled with liquid, heat-transport enhancement was by boiling, and the data were irreproducible and depended on past history.

This work was supported by the U.S. National Science Foundation through Grant DMR07-02111.